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Abstract—A striking discovery in the field of network science is
that the majority of real networked systems have some universal
structural properties. In general, they are simultaneously sparse,
scale-free, small-world, and loopy. In this article, we investigate
the second-order consensus of dynamic networks with such uni-
versal structures subject to white noise at vertices. We focus on
the network coherence HSO characterized in terms of the H2-
norm of the vertex systems, which measures the mean deviation of
vertex states from their average value. We first study numerically
the coherence of some representative real-world networks. We
find that their coherence HSO scales sublinearly with the vertex
number N. We then study analytically HSO for a class of itera-
tively growing networks—pseudofractal scale-free webs (PSFWs),
and obtain an exact solution to HSO, which also increases sub-
linearly in N, with an exponent much smaller than 1. To explain
the reasons for this sublinear behavior, we finally study HSO for
Sierpinśki gaskets, for which HSO grows superlinearly in N, with
a power exponent much larger than 1. Sierpinśki gaskets have
the same number of vertices and edges as the PSFWs but do not
display the scale-free and small-world properties. We thus con-
clude that the scale-free, small-world, and loopy topologies are
jointly responsible for the observed sublinear scaling of HSO.

Index Terms—Distributed average consensus, Gaussian white
noise, multiagent systems, network coherence, scale-free network,
small-world network.
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I. INTRODUCTION

AS A FUNDAMENTAL problem in interdisciplinary
areas ranging from control systems to computer sci-

ence and physics, consensus has been attracting extensive
attention [1]–[6]. It can be applied to various practical scenar-
ios, such as load balancing [7], [8]; multiagent rendezvous [9];
UAV flocking [10]; and sensor networks [11]–[13]. For
multiagent systems, consensus means that the agents reach
an agreement on certain quantities or values, such as load,
direction, and pace. However, when the system operates in
uncertain environments with noisy disturbances imposed on
agents, the system will never reach consensus, with the state
of each agent fluctuating around their average. In this case,
what we are concerned with is the performance of the system
in resisting noise.

The essence of various dynamical networks is the interaction
among elements, which can be described by the powerful ana-
lytic tool—graphs, where vertices represent the elements and
edges represent their relationships [14]. With this network rep-
resentation, the interactions of vertex systems are organized
into a complex topological structure as a network, character-
ized by various measurements including degree distribution,
average shortest distance, and distribution of cycles or loops
of different lengths. These structural properties have striking
consequences on the behaviors and performance of dynamical
processes running on the networked systems [15]. In the sce-
nario of networks of agents, the consensus problem has been
extensively studied, establishing nontrivial effects of network
topological properties on various aspects of the problem, for
example, the convergence rate [16]–[19] and robustness to time
delay [19]–[21], which are determined jointly by the second
smallest eigenvalue and the largest eigenvalue of the Laplacian
matrix associated with the graph.

In addition to convergence rate and time delay, many other
interesting quantities about consensus dynamics are also gov-
erned by the eigenvalues of the graph Laplacian matrix L.
For example, for first-order and second-order noisy networks
without leaders, their network coherence defined in terms of
the system’s H2-norm (i.e., the average of deviations of agent
states from the current average value) is determined by the
sum of the reciprocal of the square of each nonzero eigen-
value of L [22]–[26]. For the first-order consensus problem,
the network coherence has been studied for graphs with differ-
ent structures, including the paths [27]; stars [27]; cycles [27];
Vicsek fractal trees and T-fractal trees [25], [28]; tori and
lattices [24]; Farey graphs [29], [30]; Koch networks [31];
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hierarchical graphs [19]; Sierpinśki graphs [19]; and some
real-world networks [32]. These works revealed nontrivial
impacts of the network topology on the behavior of first-order
network coherence.

Compared with the first-order setting, the network coher-
ence for the second-order consensus problem is relatively
rarely studied, despite the fact that it can well describe many
practical applications, for example, formation control [33]
and clock synchronization [34]. It has been analyzed only
for several special graphs, such as tori [24]; classic frac-
tals [19], [25], [28]; the Koch networks [31]; and hierarchical
graphs [19]. However, these networks cannot well mimic
most real networked systems, which exhibit universal topo-
logical properties [15]: power-law degree distribution [35],
small-world behavior [36], and pattern with cycles at vari-
ous scales [37], [38], where a cycle is a path plus an edge
connecting its two ending nodes. It has been shown that the
aggregation of these properties has a critical effect on the
first-order network coherence [32]. To date, their effects on
second-order network coherence are still largely unknown,
which are expected to be quite different from those for the
first-order case, since the intrinsic mechanisms governing their
dynamics differ significantly.

To fill this gap, in this article, we study the second-order
coherence of noisy consensus on networks with the afore-
mentioned universal properties observed in many real-life
networks. The main work and contribution of this article are
summarized as follows.

First, we consider the coherence of scale-free small-world
networks with cycles at distinct scales. We show that for these
networks, the second-order coherence scales sublinearly with
the number of nodes, which is in sharp contrast to their cor-
responding first-order coherence that converges to a constant
independent of the network size [32].

Then, we address the second-order coherence of a family of
deterministically iterative networks, called pseudofractal scale-
free webs (PSFWs) [39]–[41], which displays some structural
properties similar to those of the real networks studied. By
exploiting the self-similarity of the graphs, we establish some
recursion relations for the characteristic polynomials of the
Laplacian matrices of the PSFWs and their subgraphs at con-
secutive iterations, based on which we further find exact
expressions for the second-order coherence and its leading
scaling, which also behaves sublinearly with the network
size.

Finally, we show that the sublinear scaling for second-order
coherence observed for both real and model networks lies
in the composition of scale-free behavior, small-world effect,
and the cycles of various scales in the considered networks.
For this purpose, we study the second-order coherence of the
Sierpinśki gaskets [39], [40], which has the same numbers of
nodes and edges as the PSFWs but are homogeneous and large
world, an architecture quite different from that of PSFWs. We
obtain explicit formulas for the second-order coherence and
its dominating behavior, which grows superlinearly with the
number of nodes.

Our results presented in this article provide insights into
understanding the noisy second-order consensus dynamics and

have far-reaching implications for the structural design of
communication networks.

II. PRELIMINARIES

In this section, we introduce some basic concepts about a
graph, its Laplacian matrix, related distances associated with
the eigenvalues and the eigenvectors of the Laplacian matrix,
as well as the first-order and second-order noisy consensus
problems to be studied.

A. Graph, Laplacian Matrix, and Related Distances

We use G = (V, E) to denote an undirected connected graph
with N = |V| vertices and M = |E| edges, where V is the node
set, E is the edge set, and | · | denotes the cardinality of a set.

The adjacency matrix A of a graph G is an N×N symmetric
matrix, representing the adjacent relations of its vertices. The
entry aij of A at row i and column j is defined as follows:
aij = aji = 1 if the vertex pair (i, j) ∈ E, and aij = 0 otherwise.
Let �i be the set of the neighbors for vertex i. Then, the degree
of vertex i in graph G is defined as di = ∑N

j=1 aij = ∑
j∈�i

aij.
The average degree of G is d̄ = (1/N)

∑N
i=1 di = 2M/N. If

d̄ is a constant, independent of N, we call G a sparse graph.
For graph G, its degree matrix D is a diagonal matrix, with
the ith diagonal entry equal to di, i = 1, 2, . . . , N.

Let P(d) be the degree distribution of graph G. If P(d) ∼
d−γ , we call G a scale-free network [35]. In a scale-
free network, there exist some large-degree nodes, with the
maximum-degree vertices called hub vertices, each having
degree dmax = N1/(γ−1). It has been shown [15] that many
real networks are scale free.

Another important matrix related to graph G is the Laplacian
matrix L defined by L = D − A [42]. It is an N × N posi-
tive semi-definite matrix with a unique zero eigenvalue and
N − 1 positive eigenvalues if the graph is connected. Let
λi, i = 1, 2, . . . , N, be the N eigenvalues of L rearranged
in ascending order, namely, 0 = λ1 < λ2 ≤ · · · ≤ λN .
Let uk, k = 1, 2, . . . , N, denote the corresponding mutually
orthogonal unit eigenvectors, with the xth component being
ukx, x = 1, 2, . . . , N. Using eigenvalues λk and their corre-
sponding eigenvectors uk, k = 1, 2, . . . , N, one can define
various distances for a graph, such as the resistance distance
and biharmonic distance. The resistance distance �ij between
two nodes i and j is [43]

�ij =
N∑

k=2

1

λk

(
uki − ukj

)2 (1)

while the biharmonic distance �ij between i and j is defined
as [44]

�ij =
N∑

k=2

1

λ2
k

(
uki − ukj

)2
. (2)

The sum of resistance distances over all the N(N − 1)/2
pairs of vertices in graph G is called its Kirchhoff index [43],
denoted by R(G), which can be represented by all positive
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eigenvalues of the Laplacian matrix L as [45]

R(G) =
∑

i,j∈V
i<j

�ij = 1

2

∑

i,j∈V

�ij = N
N∑

i=2

1

λi
.

The sum of biharmonic distances over all the N(N−1)/2 pairs
of vertices in graph G is called its biharmonic index [26],
denoted by B(G). Similar to R(G), B(G) can be represented
in terms of the N − 1 nonzero eigenvalues of L

B(G) =
∑

i,j∈V
i<j

�ij = N
N∑

i=2

1

λ2
i

.

It was shown [46] that B(G) can be expressed in terms of
R(G) and the resistance distances of some vertex pairs.

B. Noisy First-Order Consensus Dynamics

A graph G can be considered as a multiagent system, where
a vertex corresponds to an agent and an edge is associated with
available information flow between two agents. In the first-
order consensus network, each agent has a single state. We
express the states of the system at time t by an N-dimensional
real vector x(t) ∈ R

N , where the ith element xi(t) represents
the state of vertex i. Every agent adjusts its state according to
its local information. In the presence of noise, each agent is
subject to stochastic disturbances. For simplicity, we suppose
that every agent is independently influenced by the Gaussian
white noise with identical intensity, which is a stationary and
ergodic random process with zero mean and the following
fundamental property: two values of noise at any pair of times
are statistically independent. Then, the evolution of the system
state can be written in a matrix form as

ẋ(t) = −Lx(t) + w(t) (3)

where w(t) = (w1(t), w2(t), . . . , wN(t)) ∈ R
N is a Gaussian

signal with zero-mean and unit variance.
Due to the impact of noise, the agents will never reach

agreement and their states fluctuate around the average value
of the current states for all agents. The variance of these fluc-
tuations can be captured by network coherence, characterized
by the H2-norm of the system [27]. Without loss of general-
ity, we assume that the initial condition (1/N)

∑N
i=1 xi(0) = 0.

The concept of network coherence represents the extent of the
fluctuations [24], [25], [28],

Definition 1: For graph G, the first-order network coher-
ence HFO is defined as the mean steady-state variance of the
deviation from the average of the current agent states

HFO := 1

N
lim

t→∞

N∑

i=1

var

⎧
⎨

⎩
xi(t) − 1

N

N∑

j=1

xj(t)

⎫
⎬

⎭
. (4)

It was shown [22], [24], [27], [28], [47] that HFO is purely
determined by the Kirchhoff index or the N − 1 nonzero
eigenvalues of L, as given by

HFO = 1

2N

N∑

i=2

1

λi
= R(G)

2N2
. (5)

HFO measures the performance of the system robustness to
noise. Low HFO corresponds to good robustness, indicating
that every agent keeps close to the average of the current states.

C. Noisy Second-Order Consensus Dynamics

In the second-order consensus problem, at time t, each agent
i has two scalar-valued states: x1,i(t) and x2,i(t). Thus, the
states of all agents can be represented by two vectors: 1) posi-
tion vector x1(t) and 2) velocity vector x2(t), where x2(t)
is the first-order derivative of x1(t) with respect to time t.
Different from the first-order case, every agent in the second-
order consensus dynamics updates its state by changing the
value of ẋ2(t), on the basis of its own states and the states of
its neighbors. The noisy second-order consensus system can
be described by

[
ẋ1(t)
ẋ2(t)

]

=
[

0 I
−L −L

][
x1(t)
x2(t)

]

+
[

0
I

]

w(t) (6)

where vector w(t) ∈ R
N represents the uncorrelated Gaussian

white noise process with zero-mean and unit variance; 0 and
I are the N × N zero matrix and identity matrix, respectively.
We note that only the variable x2(t) is subject to disturbances.

The network coherence of the above second-order dynamics
only reflects the derivation of state x1(t) from the average value
of the current states of all agents.

Definition 2: For graph G, the second-order network coher-
ence HSO is defined as the mean steady-state variance of the
deviation of state x1(t) from the current average

HSO := 1

N
lim

t→∞

N∑

i=1

var

⎧
⎨

⎩
x1,i(t) − 1

N

N∑

j=1

x1,j(t)

⎫
⎬

⎭
. (7)

Similar to HFO, HSO is completely determined by the
nonzero eigenvalues of the Laplacian matrix [24]. Specifically,
HSO is determined by the biharmonic index of the network [26]

HSO = 1

2N

N∑

i=2

1

λ2
i

= B(G)

2N2
. (8)

A low HSO means that the network structure is robust to
random disturbances to the second-order consensus system.

D. Related Work

The notion of network coherence was introduced by
Bamieh et al. [24] for both noisy first-order and second-order
consensus dynamics. There are many works focusing on the
first-order network coherence. Young et al. [27] derived ana-
lytical formulas for first-order network coherence of cycles,
paths, and star graphs. Patterson and Bamieh gave exact
expressions for the first-order network coherence of some frac-
tal trees [25], as well as tori and lattices [24] of different fractal
dimensions. Some co-authors of the present article presented
explicit solutions to the first-order network coherence in the
Farey graphs [30], Koch graphs [31], self-similar hierarchical
graphs [19], and Sierpiński graphs [19]. These works unveiled
some nontrivial effects of network architecture on first-order
network coherence. In a recent paper [32], the upper and
lower bounds of the first-order network were provided for an
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TABLE I
STATISTICS OF 26 REALISTIC NETWORKS. FOR A NETWORK WITH N VERTICES AND M EDGES, WE REPRESENT THE NUMBER OF VERTICES AND

EDGES IN ITS LARGEST CONNECTED COMPONENT BY N′ AND M′ , RESPECTIVELY. d̄′ REPRESENTS THE AVERAGE DEGREE OF THE LARGEST

CONNECTED COMPONENT, EQUALLING 2M′/N′ . γ DENOTES THE POWER-LAW EXPONENT. l̄ IS THE AVERAGE SHORTEST PATH DISTANCE

arbitrary graph, where the lower bound can be approximately
reached in most real-world networks.

Relative to the first-order case, related works about second-
order network coherence HSO are much less, with the excep-
tion of few particular graphs, such as tori [24], fractal
trees [25], Koch networks [31], hierarchical graphs [19], and
the Sierpiński graphs [19]. Very recently, Yi et al. [26] estab-
lished a connection between the biharmonic distance of a
graph and its second-order network coherence. They provided
exact solutions to second-order network coherence of complete
graphs, star graphs, cycles, and paths. However, these studied
graphs cannot well mimic real-world networks, most of which
are sparse, displaying simultaneously scale-free, small-world,
and loopy structures. Thus far, it has not been unexplored how
the second-order coherence behaves in networks with these
general properties. In particular, there is no exact result about
second-order coherence in scale-free, small-world, and loopy
networks.

In the sequel, we study the second-order network coher-
ence HSO for scale-free, small-world, and loopy networks.
First, we experimentally study various real-world networks
with scale-free small-world structures and loops of different
lengths. Then, we derive an exact expression for HSO of a fam-
ily of scale-free, small-world, and loopy networks, with the
PSFWs to be detailed below. We show that their HSO behaves
sublinearly with the vertex number N. Finally, we obtain an
explicit expression for HSO of loopy Sierpiński gaskets, which
are neither scale-free nor small-world but have the same num-
ber of vertices and edges as those of PSFWs. We found that
the HSO of the Sierpiński gaskets scales superlinearly with N.
We argue that the observed sublinear scaling lies in the aggre-
gation of scale-free, small-world, and loopy properties of the
studied networks.

Fig. 1. Second-order network coherence HSO versus vertex number in 26
realistic networks on a log–log scale. The solid lines serve as guides.

III. COHERENCE OF SOME REAL NETWORKS

In this section, we evaluate the second-order coherence for
26 real-world networks chosen from the Koblenz Network
Collection [48], which are scale-free, small-world, and loopy.
All these realistic networks are typical and representative,
including different types of networks, such as information
networks, social networks, metabolic networks, and technolog-
ical networks. Table I summarizes the information of the 26
networks, listed in increasing order of their number of vertices.

Using (8), we determine the second-order coherence HSO
for the largest connected component of each studied network,
as shown in Fig. 1. From this figure, we can observe that for all
networks of different sizes, their second-order coherence HSO
is approximately a sublinear function of their vertex number
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Fig. 2. First three generations of PSFWs.

N′, that is, HSO ∼ (N′)α , with 0 < α < 1. This is in sharp
contrast to the first-order coherence HFO, which tends to small
constants much less than 1, and is independent of N′ [32].

IV. NETWORK COHERENCE IN PSEUDOFRACTAL

SCALE-FREE NETWORKS

In this section, we study analytically the coherence for
a family of deterministic scale-free model networks, called
PSFWs [39]–[41], which display some remarkable properties
as observed in many real networks. It is thus expected that the
behavior of the network coherence is similar to that for real
networks.

A. Network Construction and Properties

The PSFWs are generated in an iterative way. We denote by
Gn, the pseudofractal scale-free network after n(n ≥ 0) itera-
tions. For n = 0, G0 is a triangle consisting of three vertices
and three edges. When n ≥ 1, Gn is obtained from Gn−1 as
follows. Every existing edge in Gn−1 introduces a new ver-
tex connected to both ends of the edge. Fig. 2 illustrates the
construction process for the first three generations.

Let Nn and En denote, respectively, the number of ver-
tices and the number of edges in Gn. It it easy to verify that
Nn = [(3n+1 + 3)/2] and En = 3n+1. In network Gn, the
three vertices generated at n = 0 have the largest degree 2n+1,
which are called hub vertices and are denoted by An, Bn, and
Cn, respectively.

The PSFWs are self-similar, which suggests another con-
struction method highlighting their self-similar structure. This
approach creating the networks is as follows. Given the nth
generation network Gn, the (n + 1)th generation Gn+1 is
obtained by joining three copies of Gn at their hubs, see Fig. 3.
Let G(θ)

n , θ = 1, 2, 3, represent the three replicas of Gn, and
let A(θ)

n , B(θ)
n , and C(θ)

n , θ = 1, 2, 3 represent the three hub
vertices of G(θ)

n , respectively. Then, Gn+1 can be generated by
merging G(θ)

n , θ = 1, 2, 3, with A(1)
n and B(3)

n being identified
as An+1, B(2)

n and C(1)
n being identified as Bn+1, and A(2)

n and
C(3)

n being identified as Cn+1.
The PSFWs exhibit some typical properties of realistic

networks. They are scale-free, with the degree distribution
P(d) obeying a power-law form P(d) ∼ d1+ln 3/ ln 2 [49]. They
are small-world, with the average distance scaling logarith-
mically with Nn. Moreover, they are highly clustered, with
the average clustering coefficient converging to (4/5). Finally,
they have many cycles of different lengths, the distribution of
which is studied in [37].

Fig. 3. Second construction of PSFWs, highlighting the self-similar property.

B. Exact Solutions and Scalings for Network Coherence

Let Ln denote the Laplacian matrix of network Gn, with
a unique zero eigenvalue λ1(n) and Nn − 1 nonzero eigen-
values λ2(n), λ3(n),. . ., λNn(n). Let HFO(n) and HSO(n)

represent, respectively, the first-order network coherence and
second-order network coherence of Gn. To determine HFO(n)

and HSO(n), we define two quantities Sn and Tn by Sn =∑Nn
i=2(1/[λi(n)]) and Tn = ∑Nn

i=2(1/[λ2
i (n)]). Then, HFO(n) =

Sn/(2Nn) and HSO(n) = Tn/(2Nn). We next find Sn and Tn.
1) Recursive Relations for Related Polynomials and

Quantities: To determine Sn and Tn, we introduce some quan-
tities. Let Pn(λ) denote the characteristic polynomial of matrix
Ln, that is

Pn(λ) = det(Ln − λIn) (9)

where In is the Nn × Nn identity matrix. Let Qn be an (Nn −
1) × (Nn − 1) submatrix of (Ln − λIn), obtained by removing
from (Ln − λIn) the row and column corresponding to a hub
vertex in Gn. Let Rn represent a submatrix of (Ln − λIn)

with an order (Nn − 2) × (Nn − 2), obtained from (Ln − λIn)

by removing from it two rows and columns corresponding
to two hub vertices in Gn. Let Xn represent a submatrix of
(Ln − λIn) with an order (Nn − 1) × (Nn − 1), obtained from
(Ln−λIn) by removing from it one row corresponding to a hub
vertex and one column corresponding to another hub vertex.
Moreover, let Qn(λ), Rn(λ), Xn(λ) denote, respectively, the
determinants of Qn, Rn, and Xn. As will be shown later, Sn

and Tn can be expressed in terms of the coefficients of some
related polynomials.

Lemma 1: For any non-negative integer n

Pn+1(λ) = 2Qn(λ)3 + 6Pn(λ)Qn(λ)Rn(λ)

+ 9λQn(λ)2Rn(λ) + 3λPn(λ)Rn(λ)2

+ 6λ2Qn(λ)Rn(λ)2 + λ3Rn(λ)3 + 2Xn(λ)3 (10)

Qn+1(λ) = 3Qn(λ)2Rn(λ) + Pn(λ)Rn(λ)2

+ 4λQn(λ)Rn(λ)2 + λ2Rn(λ)3 (11)

Rn+1(λ) = 2Rn(λ)2Qn(λ) + λRn(λ)3 (12)

Xn+1(λ) = 2Qn(λ)Rn(λ)Xn(λ) + λRn(λ)2Xn(λ)

− Rn(λ)Xn(λ)2. (13)

Proof: By definition, Pn+1 can be expressed as

Pn+1(λ) =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

2n+2 − λ −1 −1 sn sn 0
−1 2n+2 − λ −1 tn 0 sn

−1 −1 2n+2 − λ 0 tn tn
sT

n tTn 0 Rn 0 0
sT

n 0 tTn 0 Rn 0
0 sT

n tTn 0 0 Rn

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(14)
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where 2n+2 denotes the degree of the hub vertices An+1, Bn+1,
and Cn+1 in network Gn+1. sn (tn) is a vector of order Nn − 2
with 2n+1 − 1 nonzero entries −1 and Nn − 2n+1 − 1 zero
entries, in which each −1 describes the connection between
the hub vertex An+1 (Bn+1) and vertices belonging to G(1)

n ,
G(2)

n or G(3)
n , and the superscript T of a vector represents its

transpose.
In a similar way, we obtain

Qn+1(λ) =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

2n+2 − λ −1 tn 0 sn

−1 2n+2 − λ 0 tn tn
tTn 0 Rn 0 0
0 tTn 0 Rn 0
sT

n tTn 0 0 Rn

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(15)

Rn+1(λ) =

∣
∣
∣
∣
∣
∣
∣
∣

2n+2 − λ 0 tn tn
0 Rn 0 0
tTn 0 Rn 0
tTn 0 0 Rn

∣
∣
∣
∣
∣
∣
∣
∣

(16)

Xn+1(λ) =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

−1 −1 tn 0 sn

−1 2n+2 − λ 0 tn tn
sT

n 0 Rn 0 0
sT

n tTn 0 Rn 0
0 tTn 0 0 Rn.

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

. (17)

In the sequel, we will show how to derive the recursive rela-
tions for Pn+1(λ), Qn+1(λ), Rn+1(λ), and Xn+1(λ). By the
Laplace theorem, we have

Pn+1(λ)

=

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

2n+1 − λ −1 0 sn 0 0
−1 2n+2 − λ −1 tn 0 sn

−1 −1 2n+2 − λ 0 tn tn
sT

n tTn 0 Rn 0 0
sT

n 0 tTn 0 Rn 0
0 sT

n tTn 0 0 Rn

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

2n+1 − λ 0 −1 0 sn 0
−1 2n+2 − λ −1 tn 0 sn

−1 −1 2n+2 − λ 0 tn tn
sT

n tTn 0 Rn 0 0
sT

n 0 tTn 0 Rn 0
0 sT

n tTn 0 0 Rn

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

+ λ

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

2n+2 − λ −1 tn 0 sn

−1 2n+2 − λ 0 tn tn
tTn 0 Rn 0 0
0 tTn 0 Rn 0
sT

n tTn 0 0 Rn.

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

. (18)

According to the properties of determinants, it is straightfor-
ward to obtain (10) from (18) by using the approach in [50].
Similarly, we can derive (11)–(13).

2) Analytical Solutions for Intermediary Quantities:
Having derived the recursive relations for the above four char-
acteristic polynomial Pn(λ), Qn(λ), Rn(λ), and Xn(λ), we now
determine the coefficients of Pn(λ). Define p(i)

n (0 ≤ i ≤ 2)
as the coefficient of the term λi corresponding to ([Pn(λ)]/λ).
Then, p(0)

n denotes the constant item, and p(1)
n and p(2)

n are
the coefficients of the terms with degree 1 and 2, respectively.

According to Vieta’s formulas, we obtain

Sn =
Nn∑

i=2

1

λi(n)
= −p(1)

n

p(0)
n

(19)

Tn =
Nn∑

i=2

1

λ2
i (n)

=
( Nn∑

i=2

1

λi(n)

)2

− 2
∑

2≤i<j≤Nn

1

λi(n)λj(n)

= S2
n − 2

p(2)
n

p(0)
n

. (20)

Thus, the problem of determining Sn and Tn is reduced to
determining p(0)

n , p(1)
n , and p(2)

n . In order to find these three
coefficients, we introduce some additional quantities. Let q(i)

n ,
r(i)

n , and x(i)
n , 0 ≤ i ≤ 3, be the coefficients of term λi

corresponding to Qn(λ), Rn(λ), and Xn(λ), respectively.
Lemma 2: For any non-negative integer n

p(0)
n = −2

1
4

(−7+31+n−2n
)

3
1
4

(
5+31+n+2n

)(
1 + 3n) (21)

q(0)
n = 2− 3

4 + 31+n
4 − n

2 3
1
4 + 31+n

4 + n
2 (22)

r(0)
n = 2

1
4 + 31+n

4 + n
2 3− 3

4 + 31+n
4 − n

2 (23)

x(0)
n = −2− 3

4 + 31+n
4 − n

2 3
1
4 + 31+n

4 + n
2 (24)

p(1)
n = 1

7
2

1
4

(−15+31+n−2n
)

3
1
4

(
1+31+n−2n

)

×
(

25 × 2n − 7 × 3n + 8 × 31+2n + 25 × 31+3n

+ 5 × 61+n − 35 × 18n
)

(25)

q(1)
n = 1

7
2

1
4

(−11+31+n−2n
)

3
1
4

(−3+31+n−2n
)

×
(
−11 × 22+n + 7 × 3n − 25 × 31+2n

)
(26)

r(1)
n = 1

7
2

1
4

(−7+31+n+2n
)

3
1
4

(−7+31+n−6n
)

×
(

3 × 22+n − 25 × 31+2n + 7 × 3n
(
−1 + 22+n

))

(27)

x(1)
n = 1

7
2

1
4

(−11+31+n−2n
)

3
1
4

(−3+31+n−2n
)

×
(

21+n − 7 × 3n + 25 × 31+2n − 7 × 61+n
)

(28)

p(2)
n = 1

5635
2

1
4

(−27+31+n−2n
)

3
1
4

(−7+31+n−6n
)

×
(
−41 × 27+2n31+n − 9775 × 21+n33+2n

+ 129283 × 31+3n − 71875 × 33+5n

+ 9039 × 42+n

− 20125 × 61+n + 93541 × 9n

+ 79373 × 42+n9n

+ 147163 × 91+2n + 100625 × 21+n91+2n

− 64975 × 541+n
)

(29)
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q(2)
n = 1

5635
2

1
4

(−23+31+n−2n
)

3
1
4

(−11+31+n−6n
)

×
(

8855 × 23+n31+n − 1127 × 27+2n31+n

+ 71875 × 33+4n − 18819 × 42+n − 93541 × 9n

− 61985 × 42+n9n + 31625 × 23+n91+n

− 36596 × 271+n
)

(30)

r(2)
n = 1

5635
2

1
4

(−19+31+n+2n
)

3
1
4

(−15+31+n−10n
)

×
(

18873 × 23+2n + 161 × 24+2n33+n

− 115 × 29+n31+2n − 29288 × 32+3n

− 20125 × 23+n32+3n + 71875 × 33+4n

− 805 × 63+n + 127351 × 9n

− 28175 × 23+2n9n
)

(31)

x(2)
n = 1

5635
2

1
4

(−23+31+n−2n
)

3
1
4

(−11+31+n−6n
)

×
(

1413 × 23+2n − 805 × 22+n31+n

+ 1771 × 24+2n31+n − 71875 × 33+4n

+ 93541 × 9n − 28175 × 23+2n9n

− 8165 × 24+n91+n + 36596 × 271+n

+ 20125 × 22+n271+n
)
. (32)

Proof: From (10)–(13), by using an approach similar to that
in [50], it is not difficult to derive the following recursive
relations governing the above-defined coefficients:

p(0)
n+1 = 6p(0)

n q(0)
n r(0)

n + 9
[
q(0)

n

]2
r(0)

n + 6
[
q(0)

n

]2
q(1)

n

+ 6
[
x(0)

n

]2
x(1)

n (33)

q(0)
n+1 = 3

[
q(0)

n

]2
r(0)

n (34)

r(0)
n+1 = 2q(0)

n

[
r(0)

n

]2
(35)

x(0)
n+1 = 2q(0)

n r(0)
n x(0)

n − r(0)
n

[
x(0)

n

]2
(36)

p(1)
n+1 = 3p(0)

n

[
r(0)

n

]2 + 6q(0)
n

[
r(0)

n

]2 + 6q(0)
n r(0)

n p(1)
n

+ 6p(0)
n r(0)

n q(1)
n + 18q(0)

n r(0)
n q(1)

n + 6q(0)
n

[
q(1)

n

]2

+ 6p(0)
n q(0)

n r(1)
n + 9

[
q(0)

n

]2
r(1)

n + 6x(0)
n

[
x(1)

n

]2

+
[
6q(0)

n

]2
q(2)

n + 6
[
x(0)

n

]2
x(2)

n (37)

q(1)
n+1 = p(0)

n

[
r(0)

n

]2 + 4q(0)
n

[
r(0)

n

]2 + 6q(0)
n r(0)

n q(1)
n

+ 3
[
q(0)

n

]2
r(1)

n (38)

r(1)
n+1 =

[
r(0)

n

]3 + 2
[
r(0)

n

]2
q(1)

n + 4q(0)
n r(0)

n r(1)
n (39)

x(1)
n+1 =

[
r(0)

n

]2
x(0)

n + 2r(0)
n x(0)

n q(1)
n + 2q(0)

n x(0)
n r(1)

n

−
[
x(0)

n

]2
r(1)

n + 2q(0)
n r(0)

n x(1)
n − 2r(0)

n x(0)
n x(1)

n (40)

p(2)
n+1 =

[
r(0)

n

]3 + 3
[
r(0)

n

]2
p(1)

n + 6
[
r(0)

n

]2
q(1)

n + 6r(0)
n p(1)

n

q(1)
n + 9r(0)

n

[
q(1)

n

]2 + 2
[
q(1)

n

]3 + 6p(0)
n r(0)

n r(1)
n

+ 12q(0)
n r(0)

n r(1)
n + 6q(0)

n p(1)
n r(1)

n + 6p(0)
n q(1)

n r(1)
n

+ 18q(0)
n q(1)

n r(1)
n + 2

[
x(1)

n

]3 + 6q(0)
n r(0)

n p(2)
n

+ 6p(0)
n r(0)

n q(2)
n + 18q(0)

n r(0)
n q(2)

n + 12q(0)
n q(1)

n q(2)
n

+ 6p(0)
n q(0)

n r(2)
n + 9

[
q(0)

n

]2
r(2)

n + 12x(0)
n x(1)

n x(2)
n

+ 6
[
q(0)

n

]2
q(3)

n + 6
[
x(0)

n

]2
x(3)

n (41)

q(2)
n+1 =

[
r(0)

n

]3 +
[
r(0)

n

]2
p(1)

n + 4
[
r(0)

n

]2
q(1)

n + 3r(0)
n

[
q(1)

n

]2 + 2p(0)
n r(0)

n r(1)
n + 8q(0)

n r(0)
n r(1)

n + 6q(0)
n

q(1)
n r(1)

n + 6q(0)
n r(0)

n q(2)
n + 3

[
q(0)

n

]2
r(2)

n (42)

r(2)
n+1 = 3

[
r(0)

n

]2
r(1)

n + 4r(0)
n q(1)

n rn(1) + 2q(0)
n

[
r(1)

n

]2

+ 2
[
r(0)

n

]2
q(2)

n + 4q(0)
n r(0)

n r(2)
n (43)

x(2)
n+1 = 2r(0)

n x(0)
n r(1)

n + 2x(0)
n q(1)

n r(1)
n +

[
r(0)

n

]2
x(1)

n

+ 2r(0)
n q(1)

n x(1)
n + 2q(0)

n r(1)
n x(1)

n − 2x(0)
n r(1)

n x(1)
n

− r(0)
n

[
x(1)

n

]2 + 2r(0)
n x(0)

n q(2)
n + 2q(0)

n x(0)
n r(2)

n

−
[
x(0)

n

]2
r(2)

n + 2q(0)
n r(0)

n x(2)
n − 2r(0)

n x(0)
n x(2)

n (44)

q(3)
n+1 = 3

[
r(0)

n

]2
r(1)

n + 2r(0)
n p(1)

n r(1)
n + 8r(0)

n q(1)
n r(1)

n

+ 3
[
q(1)

n

]2
r(1)

n + p(0)
n

[
r(1)

n

]2 + 4q(0)
n

[
r(1)

n

]2

+
[
r(0)

n

]2
p(2)

n + 4
[
r(0)

n

]2
q(2)

n + 6r(0)
n q(1)

n q(2)
n

+ 6q(0)
n r(1)

n q(2)
n + 2p(0)

n r(0)
n r(2)

n + 8q(0)
n r(0)

n r(2)
n

+ 6q(0)
n q(1)

n r(2)
n + 6q(0)

n r(0)
n q(3)

n + 3
[
q(0)

n

]2
r(3)

n (45)

r(3)
n+1 = 3r(0)

n

[
r(1)

n

]2 + 2q(1)
n

[
r(1)

n

]2 + 4r(0)
n r(1)

n q(2)
n

+ 3
[
r(0)

n

]2
r(2)

n + 4r(0)
n q(1)

n r(2)
n + 4q(0)

n r(1)
n r(2)

n

+ 2
[
r(0)

n

]2
q(3)

n + 4q(0)
n r(0)

n r(3)
n (46)

x(3)
n+1 = x(0)

n

[
r(1)

n

]2 + 2r(0)
n r(1)

n x(1)
n + 2q(1)

n r(1)
n x(1)

n

− r(1)
n

[
x(1)

n

]2 + 2x(0)
n r(1)

n q(2)
n + 2r(0)

n x(1)
n q(2)

n

+ 2r(0)
n x(0)

n r(2)
n + 2x(0)

n q(1)
n r(2)

n + 2q(0)
n x(1)

n r(2)
n

− 2x(0)
n x(1)

n r(2)
n +

[
r(0)

n

]2
x(2)

n + 2r(0)
n q(1)

n x(2)
n

+ 2q(0)
n r(1)

n x(2)
n − 2x(0)

n r(1)
n x(2)

n − 2r(0)
n x(1)

n x(2)
n

+ 2r(0)
n x(0)

n q(3)
n + 2q(0)

n x(0)
n r(3)

n −
[
x(0)

n

]2
r(3)

n

+ 2q(0)
n r(0)

n x(3)
n − 2r(0)

n x(0)
n x(3)

n . (47)

With the initial values p(0)
0 = −9, q(0)

0 = 3, r(0)
0 = 2, x(0)

0 = 3,
p(1)

0 = 6, q(1)
0 = −4, r(1)

0 = −1, x(1)
0 = 1, p(2)

0 = −1,
q(2)

0 = −1, r(2)
0 = 0, and x(2)

0 = 0, (33)–(47) can be solved to
obtain (21)–(32). Due to the space limitation, below we only
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derive q(0)
n , r(0)

n , and x(0)
n , the other quantities can be obtained

in a similar way.
Equation (35) can be rewritten as

q(0)
n = r(0)

n+1

2
[
r(0)

n

]2
. (48)

Inserting (48) into (34) leads to

r(0)
n+2

[
r(0)

n+1

]3
= 3r(0)

n+1

2
[
r(0)

n

]3
(49)

which provides an explicit recursive relation governing
r(0)

n , r(0)
n+1, and r(0)

n+2.

We now derive a closed-form expression for r(0)
n . To this

end, we introduce an intermediary quantity kn, defined as

kn = r(0)
n

[
r(0)

n−1

]3
(50)

which, together with (49), yields

kn+1 = 3

2
kn. (51)

Using the initial condition k1 = r(0)
1 /[r(0)

0 ]3 = 3, (51) is solved
to give

kn = 2

(
3

2

)n

. (52)

With this exact result of kn, (50) is recast as

ln r(0)
n = 3 ln r(0)

n−1 + ln k(0)
n . (53)

Considering ln r(0)
0 = ln 2 and the expression for kn given

in (52), (53) is solved inductively to yield

ln r(0)
n = 3n ln r(0)

0 +
n−1∑

i=0

3i ln

[

2

(
3

2

)i+1
]

(54)

which implies

r(0)
n = 2

1
4 + 31+n

4 + n
2 3− 3

4 + 31+n
4 − n

2

as shown in (23).
After deriving r(0)

n , we continue to calculate q(0)
n .

Plugging (23) into (48) gives

q(0)
n = 2− 3

4 + 31+n
4 − n

2 3
1
4 + 31+n

4 + n
2 .

In this way, we obtain (22). Finally, we determine x(0)
n . By

inserting (34) into (36), one obtains

x(0)
n+1

q(0)
n+1

= 2x(0)
n

3q(0)
n

− 1

3

[
x(0)

n

q(0)
n

]2

. (55)

In order to obtain the exact expression for x(0)
n , we introduce

another quantity yn defined by

yn = x(0)
n

q(0)
n

. (56)

Then, (55) can be rewritten as

yn+1 = 2

3
yn − 1

3
y2

n (57)

which, under the initial condition y0 = x(0)
0 /q(0)

0 = −1, is
solved to yield

yn = −1. (58)

Combine (58), (56), and r(0)
n , we obtain

x(0)
n = −2− 3

4 + 31+n
4 − n

2 3
1
4 + 31+n

4 + n
2

as provided by (24).
3) Explicit Expression and Behavior for Network

Coherence: With the above-obtained quantities, we can
obtain accurate solutions for both the first-order and the
second-order network coherence of network Gn, from which
we can further reveal their asymptotical behaviors.

Theorem 1: For the PSFW Gn with n ≥ 1, the first-order
coherence HFO(n) and second-order coherence HSO(n) of the
system with dynamics in (5) and (8) are

HFO(n) = 1

28(1 + 3n)232+n
× (

25 × 2n

− 7 × 3n + 8 × 31+2n + 25 × 31+3n

+ 5 × 61+n − 35 × 18n
)

(59)

HSO(n) = 3−4−2n

90160(1 + 3n)3
×
(

69538 × 32+5n + 360249

× 4n + 35 × 22+n31+n(−575 + 1539 × 2n)

+ 322 × 27n
(

1135 − 3225 × 21+n + 847 × 21+2n
)

+ 31+4n
(

516262 − 60375 × 22+n + 140875 × 4n
)

+ 2 × 9n
(

55223 − 94875 × 21+n + 480487 × 4n
))

.

(60)

Moreover

lim
n→∞ HFO(n) = 25

84
(61)

lim
n→∞ HSO(n) = 25

432
(Nn)

(log3 4)−1. (62)

Proof: Since HFO(n) = Sn/(2Nn) and HSO(n) = Tn/(2Nn),
combining the above-obtained related quantities and using (19)
and (20), we obtain (59) and (60), which lead to (61) and (62)
for sufficiently large n.

Notice that (59) and (61) were previously obtained in [32]
by using a different technique. However, (60) and (62) are
novel. Theorem 1 shows that in large networks Gn, the first-
order coherence HFO(n) does not depend on n, thus not on Nn,
while the second-order coherence HSO(n) increases sublinearly
with Nn.

V. NETWORK COHERENCE IN SIERPIŃSKI GASKETS

In the previous section, we obtained an explicit formula of
network coherence HFO(n) for PSFW Gn, and showed that
HFO(n) is a sublinear function of Nn. To unveil the effect
of scale-free and small-world topologies on the scaling of
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Fig. 4. First three generations of the Sierpiński gaskets.

Fig. 5. Second construction of the Sierpiński gaskets, highlighting the self-
similar structure.

network coherence, in this section we derive an analytical
expression for network coherence in the Sierpiński gaskets
with the same numbers of vertices and edges as those of
PSFWs. We will show that the leading scalings of both
first-order and second-order network coherence for Sn are
significantly different from those associated with Gn.

The Sierpiński gaskets are also iteratively constructed. Let
Sn (n ≥ 0) denote the networks after n iterations. Then, the
Sierpiński gaskets are generated as follows. When n = 0, S0 is
an equilateral triangle with three vertices and three edges. For
n = 1, the three edges of the equilateral triangle S0 are bisected
and the central triangle is removed, yielding S1 containing
three copies of the original triangle. For n ≥ 1, Sn is generated
from Sn−1 by performing the bisection and removal procedure
for each upward-pointing triangle in Sn−1. Fig. 4 illustrates
the first three generations of Sierpiński gaskets.

Both the number of vertices and the number of edges in
Sn are the same as those of Gn. That is, there are Nn =
[(3n+1 + 3)/2] vertices and En = 3n+1 edges in Sn. Many
other properties of Sn and Gn are quite different from each
other. For example, Sierpiński gaskets are neither scale-free
nor small-world. They are homogeneous, with the degrees of
the three outmost vertices equal to 2, while the degrees of
other vertices being 4.

Despite the difference between Sn and Gn, there are some
similarity between them. For instance, both graphs have cycles
of various lengths. Moreover, Sierpiński gaskets are likewise
self-similar, as can be seen from the following alternative con-
struction approach. We denote the three outmost vertices in Sn

with degree 2 by An, Bn, and Cn, respectively. Then, Sn+1 is
obtained from Sn by joining three copies of Sn at their outmost
vertices, as shown in Fig. 5. Let S(θ)

n , θ = 1, 2, 3, represent the
three replicas of Sn, with outmost vertices A(θ)

n , B(θ)
n , and C(θ)

n .

Then, Sn+1 is created by coalescing S(θ)
n , θ = 1, 2, 3, with A(1)

n ,
B(2)

n , and C(3)
n being the three outmost vertices of Sn+1.

Let HFO(n) and HSO(n) denote, respectively, the first-order
network coherence and second-order network coherence for
Sn. By using a similar method and procedure, we can obtain
exact solutions for HFO(n) and HSO(n) and the leading scalings
for Sn, as summarized in the following theorem.

Theorem 2: For the Sierpiński gasket Sn with n ≥ 1, the
first-order coherence HFO(n) and the second-order coherence
HSO(n) of the system with dynamics in (5) and (8) are

HFO(n) = 1

20 × 32+n(1 + 3n)2

×
(

4 × 3n + 2 × 31+2n − 31+3n + 13 × 31+n5n

+ 4 × 51+n + 14 × 45n
)

(63)

HSO(n) = 1

400(1 + 3n)392+n

×
(

86 × 31+4n − 2 × 32+5n + 754 × 31+2n5n

+ 568 × 31+3n5n + 32 × 32+n51+2n + 119 × 9n

+ 28 × 5n91+2n + 64 × 151+n + 8

× 91+2n25n + 24 × 251+n + 320 × 27n

+ 1237 × 225n + 394 × 675n
)
. (64)

Moreover

lim
n→∞ HFO(n) = 7

90
(Nn)

(log3 5)−1 (65)

and

lim
n→∞ HSO(n) = 1

450
(Nn)

(log3 25)−1. (66)

Theorem 2 shows that the behaviors of both first-order
coherence HFO(n) and second-order coherence HSO(n) in the
Sierpiński gaskets significantly differ from those of PSFWs.
For large Sierpiński gaskets Sn, the first-order coherence
HFO(n) increases sublinearly with Nn, while the second-order
coherence HSO(n) behaves superlinearly with Nn.

In Fig. 6, we report a direct comparison of approximate and
exact results about first-order coherence HFO(n) and second-
order coherence HSO(n) in PSFWs Gn and the Sierpiński
gaskets Sn for various n. For moderately large n, the exact
and approximate results agree with each other.

VI. RESULT ANALYSIS

In the previous sections, we have investigated the noisy
second-order consensus dynamics of some real-life scale-free
networks and a class of scale-free model networks. For all
these studied scale-free networks, their second-order network
coherence scales sublinearly with the number of vertices N.
Note that for a network, its second-order coherence is com-
pletely determined by the sum of the square reciprocal of every
nonzero eigenvalue of its Laplacian matrix. Since for scale-free
networks, the eigenvalues and their distributions are closely
related to the network structures [51], the sublinear scaling
for coherence observed for the considered scale-free networks
lies in their intrinsic structural characteristics, in particular, the
scale-free small-world topology and cycles of different lengths.
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Fig. 6. First-order and second-order network coherences versus Nn in both
Gn and Sn on a log-log scale, with n changing from 1 to 20. The exact
results of Gn are calculated by (59) and (60), while the explicit results of Sn
are obtained by (63) and (64). The approximate results are obtained by (61)
and (62) for Gn, and by (65) and (66) for Sn.

As shown in [26], the second-order coherence of a network
is determined by the average of biharmonic distances �ij over
all pairs of vertices. By formulas (1) and (2), for any pair
of vertices i and j, both resistance distance �ij and bihar-
monic distance �ij are combinations of (1/λk)(uki − ukj)

2,
k = 1, 2, . . . , N − 1. For the resistance distance, the weight of
each term is 1, while for the biharmonic distance, the weight
varies, with a larger term (1/λk)(uki − ukj)

2 corresponding to
a larger weight (1/λk). Thus, for most graphs, �ij is greater
than �ij. In a scale-free network, the existence of large-degree
vertices connected to many other vertices is accompanied by
the small-world property, characterized by at most a loga-
rithmical growth average path length [15]. Moreover, for a
scale-free small-world network, its average resistance distance
is even smaller, converging to a constant [32]. In contrast to
the constant average resistance distance, the average of bihar-
monic distances is dependent on N, scaling sublinearly with
N. Next, we show that this sublinear scaling is an aggregation
of scale-free, small-world, and loopy structures, since neither
power-law small-world behavior nor cycles alone can ensure
a sublinear coherence, but it leads to linear or superlinear
scaling.

It was reported that for the scale-free small-world Koch
network [31], its second-order network coherence HSO
behaves linearly with the number of vertices N, which is also
observed for the small-world hierarchical graphs [19] with an
exponential degree distribution. Both Koch networks and hier-
archical graphs are highly clustered but have only small cycles
such as triangles, lacking cycles of various lengths. Thus, the
existence of cycles of different lengths is necessary for sub-
linear scaling of HSO in a network. However, cycles do not
suffice to guarantee a sublinear scaling of HSO. For example,
in the Sierpinśki gaskets, there are cycles of various lengths,
but their HSO is a superlinear function of N as given by for-
mula (66). This, in turn, indicates that scale-free small-world
topology is only necessary for a sublinear scaling of HSO in
a sparse network.

Note that although the small-world is an accompanying phe-
nomenon of the power-law behavior [15], small-world and
loopy structures cannot lead to the sublinear scaling of second-
order network coherence. For example, using the result in [30]
and the technique in this current article, we can determine
the analytical expression of second-order coherence for the
Farey graphs, which scales linearly with the number of nodes,
being quite different from the sublinear scaling observed for
the PSFWs. By construction, the Farey graphs are subgraphs
of PSFWs, both of which are small world and highly clustered,
with many cycles at different scales. The reason for the scaling
distinction of the second-order coherence between the Farey
graphs and PSFWs lies in, at least partially, the scale-free
topology of PSFWs that the Farey graphs do not possess.

VII. CONCLUSION

A large variety of real-world networks are sparse and loopy
and exhibit simultaneously scale-free and small-world fea-
tures. These structural properties have a substantial influence
on different dynamics running on such networks. In this article,
we presented an extensive study on second-order consensus in
noisy networks with these properties, focusing on its robust-
ness measured by network coherence that is characterized by
the average steady-state variance of the system. We first stud-
ied numerically the network coherence for some representative
real scale-free networks, which grows sublinearly with the ver-
tex number N. We then determined exactly the coherence for
a class of deterministic scale-free networks, PSFWs, which
is also a sublinear function of N. Moreover, we studied ana-
lytically the coherence for Sierpinśki gaskets with the same
numbers of vertices and edges as the PSFWs, the leading scal-
ing of which scales superlinearly in N. We concluded that the
scale-free, small-world, and loopy structures are responsible
for the observed sublinear scaling of coherence for the studied
networks.

It should be mentioned that we only addressed second-order
noisy consensus on undirected binary networks, concentrat-
ing on scale-free, small-world, and loopy properties on the
effects of network coherence. Future work should include the
following directions. First, it would be of interest to con-
sider second-order noisy consensus on directed [52], [53] and
weighted [54], [55] communication graphs, with an aim to
explore the influences of one-way action or distribution of
edge weights on network coherence. Another direction is to
examine second-order noisy linear consensus networks in the
presence of time delay [56], [57]. Moreover, of particular
interest is to consider the case that both scalar-valued states
of each agent are subject to disturbances. Finally, our method
and process for computing the network coherence are only
applicable to deterministically growing self-similar networks,
it is of great significance to modify or extend them to more
general networks.
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