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The power-law behavior is ubiquitous in a majority of real-world networks, and it was shown to

have a strong effect on various combinatorial, structural and dynamical properties of graphs. For

example, it has been shown that in real-life power-law networks, both the matching number and

the domination number are relatively smaller, compared with homogeneous graphs. In this paper,

we study analytically several combinatorial problems for two power-law graphs with the same

number of vertices, edges and the same power exponent. For both graphs, we determine exactly

or recursively their matching number, independence number, domination number, the number of

maximum matchings, the number of maximum independent sets and the number of minimum

dominating sets. We show that power-law behavior itself cannot characterize the combinatorial

properties of a heterogenous graph. Since the combinatorial properties studied here have found

wide applications in different fields, such as structural controllability of complex networks, our work

offers insight in the applications of these combinatorial problems in power-law graphs.
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1. INTRODUCTION

Let G = (V , E) be a connected unweighted graph with vertex

set V and edge set E . A matching of graph G is a subset of edge

set E , where no two edges are incident to a common vertex.

A matching of maximum cardinality is called a maximum

matching. The matching number of graph G is the cardinality

of a maximum matching. An independent set of a graph G is

a subset I of vertex set V , such that each pair of vertices in I

is not adjacent in G. A maximum independent set (MIS) is an

independent set I with the largest cardinality. The cardinality

of an MIS for graph G is called its independent number. Graph

G is called a unique independence graph if it has a unique MIS

[1]. A dominating set of a graph G is a subsetD of vertex set V ,

such that every vertex inV\D is connected to at least one vertex

in set D. A dominating set D is called a minimum dominating

set (MDS) if it has the least cardinality. The cardinality of an

MDS for graph G is called its domination number.

The aforementioned combinatorial problems have been

applied to numerous aspects in various disciplines or practical

areas. For example, the size and the number of maximum

matchings have found applications in physics [2], chemistry

[3] and computer science [4]; the MIS problem is associated

with many fundamental graph problems, being equivalent to

the minimum vertex cover problem [5] in the same graph and

the maximum clique problem in its complement graph [6], and

has been widely used to collusion detection in voting pools

[7] and wireless networking schedules [8]; while the MDS

problem is closely related to multi-document summarization

in sentence graphs [9], routing on ad hoc wireless networks

[10] and controllability in protein interaction networks [11].

Of particular interest is the connection of maximum matchings

and MDS to structural controllability of complex networks

[12], in the contexts of vertex [13] and edge [14] dynamics,

respectively.
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In view of the intrinsic relevance in both theoretical and

practical scenarios, the above combinatorial problems have

received considerable attention from the scientific community

of theoretical computer science, theoretical physics, discrete

mathematics, among others. In the past decade, these prob-

lems have become very active and have been popular research

objects. Many authors have devoted their efforts to develop-

ing algorithms for the problems associated with maximum

matchings [15–20], MISs [21–23] as well as MDSs [24–28].

Although scientists have made a concerted effort, solving these

problems is an important challenge and often computationally

difficult. For example, finding an MDS [29] or an MIS [30, 31]

of a general graph is NP-hard, while enumerating maximum

matchings, or MISs, or MDSs in a graph is more difficult,

which is #P-complete even in a bipartite graph [32, 33]. Thus,

it makes sense to construct or seek special graph classes for

which these combinatorial problems can be exactly solved [4],

in order to achieve a particular goal.

On the other hand, extensive empirical study [34] has uncov-

ered that a majority of real-world networks are typically scale-

free [35], characterized by a power-law distribution P(k) ∼

k−γ (2 < γ ≤ 3) for their vertex degree. This nontrivial

scale-free structure is a fundamental concept in the study of the

emerging network sciences. Many previous studies have shown

that the scale-free topology plays an important role in various

structural [36], combinatorial [13, 19, 26–28] and dynamical

[37–39] properties of a graph. In the context of combinatorial

aspect, it has been shown that compared with non-scale-free

graphs, in scale-free networks, both the matching number [13]

and the number of maximum matchings [19] are significantly

smaller. It is the same with the domination number and the

number of MDSs [20, 26, 27]. In addition, scale-free architec-

ture also strongly affects the MIS problem [40] and its related

optimization algorithms [41]. As is well known, in addition

to the scale-free topology, many real networks show simulta-

neously some other remarkable properties, e.g. self-similarity

[42]. Thus, it is difficult to separate the role or effect of a

specific structural property in the performance of a network.

Then, an interesting question is raised naturally: whether the

scale-free structure is a unique ingredient characterizing the

above combinatorial problems in power-law graphs?

In this paper, we study several combinatorial problems in two

self-similar scale-free networks with the same power exponent:

one is fractal but not small-world [43] and the other is small-

world but not fractal [44]. For both graphs, by using the dec-

imation technique based on their self-similarity, we determine

exactly the matching number, the independence number and

the domination number. Moreover, we determine exactly or

recursively the number of maximum matchings, the number

of MISs and the number of MDSs. We show that the two net-

works differ in the studied quantities, which implies that scale-

free topology alone cannot determine the combinatorial prop-

erties of power-law graphs, including maximum matchings,

MISs and MDSs. Moreover, our exact results are instrumental

FIGURE 1. Construction method for the fractal scale-free networks;

to obtain network of next iteration, each iterative edge (vi, vj) of

current iteration is replaced by two parallel paths of two iterative edges

(solid lines) on the rhs of the arrow, with vi and vj being the end vertices

of two paths, and then link the two new vertices other than vi and vj
by a new non-iterative edge (dotted line).

FIGURE2.The first three iterations of the fractal scale-free networks.

for testing heuristic or stochastic algorithms associated with

related combinatorial problems.

2. CONSTRUCTIONS AND STRUCTURAL

PROPERTIES OF SELF-SIMILAR

SCALE-FREE NETWORKS

In this section, we give a brief introduction to constructions

and their structural properties of two self-similar scale-free

networks, with the same number of vertices, the same number

of edges and the same power exponent. One is fractal but not

small-world [43], and the other is small-world but not fractal

[44].

2.1. Constructions and structural properties of fractal

scale-free networks

We first introduce the fractal scale-free networks under consid-

eration, which are generated by an iterative way. Let Gn, n ≥ 0,

denote the fractal scale-free network after n iterations. Then,

Gn is constructed as follows: for n = 0, G0 is the complete

graph K2 with two vertices connected by an iterative edge. For

n ≥ 1, Gn is obtained from Gn−1 by performing the following

operation: replace each iterative edge by the connected cluster

on the right-hand side (rhs) of the arrow in Fig. 1.

Figure 2 illustrates the construction process of the first sev-

eral iterations.

The fractal scale-free networks are self-similar, which can

be easily seen from an alternative construction approach [43]

as shown in Fig. 3. For Gn, n ≥ 0, we call the two vertices

in G0 as initial vertices and denote them as Xn and Yn, while
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FIGURE 3. Second approach for the construction of Gn+1.

we call the two vertices generated at iteration 1 as hub vertices

and denote them as Wn and Zn. Then, given the network Gn,

n ≥ 1, Gn+1 can be obtained by merging four copies of Gn at

their initial vertices. Let G
(θ)
n , θ = 1, 2, 3, 4, be four replicas

of Gn and denote the two initial vertices of G
(θ)
n by X

(θ)
n and

Y
(θ)
n , respectively. Then, Gn+1 can be obtained bymerging G

(θ)
n ,

θ = 1, 2, 3, 4, with X
(1)
n (Y

(2)
n ) and X

(3)
n (Y

(4)
n ) being identified

as the initial vertex Xn+1 (Yn+1) in Gn+1, while Y
(1)
n (Y

(3)
n ) and

X
(2)
n (X

(4)
n ) being identified as the hub vertex Wn+1 (Zn+1) in

Gn+1. After the joining process, we link the two hub vertices

Wn+1 and Zn+1 by a non-iterative edge and get Gn+1.

Let Nn and En, respectively, stand for the number of vertices

and the number of edges in Gn. By the second construction

rules, Nn and En satisfy relations Nn = 4Nn−1 − 4 and En =

4En−1 + 1. With the initial conditions N1 = 4 and E1 = 5,

we have Nn = 2
3
(4n + 2) and En = 1

3

(

4n+1 − 1
)

. Then, the

average degree of all vertices in Gn is
2En
Nn

= 2(4n+1−1)
2×4n+4

, which

is asymptotically equal to 4 for large n.

The resulting graph Gn is scale-free, since the degree of its

vertices obeys a power-law distribution P(k) ∝ k−3. Moreover,

it is fractal with a fractal dimension being 2 [43]. However, it

is not small-world, since for large n, the average distance d̄n of

Gn grows as a power function of Nn, that is d̄n ∼ (Nn)
1/2.

2.2. Constructions and structural properties

of non-fractal scale-free networks

The second networks we consider are non-fractal and scale-

free, which are also constructed iteratively. Let G′
n, n ≥ 0,

denote the network after n iterations. Then, G′
n is built as

follows. For n = 0, G′
0 is the complete graph K2 with two

vertices connected by an iterative edge. For n ≥ 1, G′
n is

obtained from G′
n−1 by performing the following operation:

replace each iterative edge by the connected cluster on the rhs

of the arrow in Fig. 4.

Figure 5 illustrates the construction process of the first sev-

eral iterations.

The non-fractal scale-free network G′
n is also self-similar,

which suggests another construction approach highlighting its

FIGURE 4. Construction method for the non-fractal scale-free net-

works; to obtain network of next iteration, each iterative edge (vi, vj)

of current iteration is replaced by two parallel paths of two iterative

edges (solid lines) on the rhs of the arrow, with vi and vj being the end

vertices of two paths, and then link vi and vj by a new non-iterative

edge (dotted line).

FIGURE 5. The first three iterations of the non-fractal scale-free

networks.

FIGURE 6. Second approach for the construction of G′
n+1.

self-similarity [44] as shown in Fig. 6. For G′
n, n ≥ 0, we call

the two vertices in G′
0 as hub vertices and denote them as X′

n

and Y ′
n, while call the two vertices generated at iteration 1 as

border vertices and denote them as W ′
n and Z′

n. Then, given

the network G′
n, n ≥ 1, G′

n+1 can be obtained by merging four

copies of G′
n at their hub vertices. Let G

′(θ)
n , θ = 1, 2, 3, 4, be

four replicas of G′
n and denote the two hub vertices of G

′(θ)
n

by X
′(θ)
n and Y

′(θ)
n , respectively. Then, G′

n+1 can be obtained by

merging G
′(θ)
n , θ = 1, 2, 3, 4, with X

′(1)
n (Y

′(2)
n ) and X

′(3)
n (Y

′(4)
n )

being identified as the hub vertex X′
n+1 (Y ′

n+1) in G′
n+1, while

Y
′(1)
n (Y

′(3)
n ) and X

′(2)
n (X

′(4)
n ) being identified as the bounder

vertexW ′
n+1 (Z

′
n+1) in G

′
n+1. After the joining process, we link

the two hub vertices X′
n+1 and Y

′
n+1 by a non-iterative edge and

get G′
n+1.

By construction, G′
n has the same number of vertices Nn, the

same number of edge En and thus the same average degree as
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those of Gn. Moreover, the G′
n is also scale-free with the same

power exponent 3 as that of Gn. However, different from Gn, G
′
n

is non-fractal since its fractal dimension is infinite, but is small-

world, with its average distance average distance d̄n growing

logarithmically with the number of vertices Nn.

After introducing the construction and topological properties

of the two self-similar scale-free networks, in what follows,

by using their self-similarity, we will study some combinato-

rial problems for these two networks, including the matching

number, the independence number, the domination number, the

number of maximum matchings, the number of MISs and the

number of MDSs. We will show that for the studied quantities,

the two networks exhibit quite different behaviors. We note

that in the process of the following computation or proof, we

employ the same notation for Gn and G′
n in the case without

inducing confusion.

3. MATCHING NUMBER AND THE NUMBER

OF MAXIMUM MATCHINGS

In this section, we study the matching number and the number

of maximum matchings in the self-similar scale-free networks.

3.1. Matching number and the number of maximum

matchings in fractal scale-free networks

We first study the matching number and the number of maxi-

mum matchings in graph Gn.

3.1.1. Matching number

Let βn denote the matching number of graph Gn. In order to

determine βn, we define some intermediate quantities. Note

that according to the number of covered initial vertices, all

the matchings of Gn can be classified into three types: �0
n, �

1
n

and �2
n, where �k

n, k = 0, 1, 2, represent the set of matchings

with each covering exactly k initial vertices of Gn. Let 2k
n,

k = 0, 1, 2, be the subset of �k
n, where each matching has

the largest cardinality, denoted by βkn , k = 0, 1, 2. Then, βn =

max{β0
n ,β

1
n ,β

2
n }.

Theorem 3.1. The matching number of graph Gn is βn =
4n+2
3
.

Proof. Since βn = max{β0
n ,β

1
n ,β

2
n }, we next evaluate the

three quantities β0
n , β

1
n and β2

n , all of which can be determined

graphically.

Figures 7–9 show, respectively, all the available configura-

tions of maximummatchings of graph Gn+1 belonging to�k
n+1,

k = 0, 1, 2, which contains all the matchings in 2k
n+1. In

Figs 7–9, only the initial vertices X
(θ)
n and Y

(θ)
n of G

(θ)
n , θ =

1, 2, 3, 4, forming Gn+1 are shown explicitly, with filled circles

representing covered vertices and empty circles representing

vacant vertices. Note that in Figs 7–9, if both of the hub

FIGURE 7. Illustration of all possible configurations and their sizes

of matchings for graph Gn+1 belonging to �0
n+1, which contain all

matchings in 20
n+1.

vertices, Wn+1 and Zn+1, of Gn+1 are vacant, then the non-

iterative edge connecting them is included in the matching in

order to maximize its cardinality. From these three figures, we

establish the following recursion relations for β0
n , β

1
n and β2

n :

β0
n+1 = max{4β0

n + 1, 3β0
n + β1

n , 2β
0
n + 2β1

n } , (1)

β1
n+1 = max{3β0

n + β1
n + 1, 3β0

n + β2
n , 2β

0
n + 2β1

n ,

2β0
n + β1

n + β2
n ,β

0
n + 3β1

n } , (2)

β2
n+1 = max{2β0

n + 2β1
n + 1, 2β0

n + β1
n + β2

n ,β
0
n + 3β1

n ,

2β0
n + 2β2

n ,β
0
n + 2β1

n + β2
n , 4β

1
n } . (3)

With initial condition β0
1 = 1, β1

1 = 1 and β2
1 = 2, the above

equations are solved to yield β0
n = 4n−1

3
, β1

n = 4n−1
3

and β2
n =

4n+2
3

. �

Since the number of vertices Nn in graph Gn is Nn =
2
3

(4n + 2), which is exactly twice as large as the matching

number βn = 4n+2
3

, there are perfect matchings in Gn for all

n ≥ 0.

3.1.2. Number of maximum matchings

Let θn denote the number of maximum matchings or perfect

matchings in Gn. To calculate θn, we introduce an additional

quantity φn, which denotes the number of maximummatchings

in �0
n, satisfying that each matching is maximum among all

the matchings of Gn with both initial vertices Xn and Yn being

vacant.

Theorem 3.2. The number of maximum matchings of Gn, n ≥

1, is 22
n−1.
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FIGURE 8. Illustration of all possible configurations and their sizes of matchings for graph Gn+1 belonging to �1
n+1, which contain all matchings

in 21
n+1.

Proof. Note that for n = 1, θ1 = 2 and φ1 = 1. For n ≥ 1,

we first establish the following recursion relations for the two

quantities θn and φn associated with graph Gn:

θn+1 =2θ2nφ
2
n , (4)

φn+1 =φ4
n . (5)

We only prove Eq. (5). Since β0
n = β1

n , Eq. (1) and Fig. 7

show that the cardinality of each matching in �0
n+1 is maxi-

mized if and only if all the matchings of the four copies G
(θ)
n ,

θ = 1, 2, 3, 4, are in �0
n. Then, we establish φn+1 = φ4

n .

By using Eq. (1) and Fig. 9, Eq. (4) can be proved analo-

gously.

Equations (4) and (5), together with the initial conditions

θ1 = 2 and φ1 = 1, are solved to yield θn = 22
n−1 and φn = 1

for all n ≥ 1. �

Note that both thematching number and the number of maxi-

mum matchings for graph Gn have been previously obtained in

[19] by using the technique of Pfaffian orientations, which is

more complicated than the approach used here.

3.2. Matching number and the number of maximum

matchings in non-fractal scale-free networks

We continue to study the matching number and the number of

maximum matchings in graph G′
n.

3.2.1. Matching number

Let�k
n, k = 0, 1, 2, represent matchings covering exactly k hub

vertices of G′
n. Let 2k

n, k = 0, 1, 2, be the subset of �k
n, where

each matching has the largest cardinality among all matchings

in �k
n, with the largest cardinality being denoted by βkn , k =

0, 1, 2. Then, the matching number βn of G
′
n can be expressed

as βn = max{β0
n ,β

1
n ,β

2
n }.
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FIGURE 9. Illustration of all possible configurations and their sizes of matchings for graph Gn+1 belonging to �2
n+1, which contain all matchings

in 22
n+1.

Theorem 3.3. The matching number of graph G′
n is βn =

22n−1+4
3

.

Proof. In order to find βn, we can alternatively evaluate the

three quantitiesβ0
n , β

1
n andβ2

n by using the self-similar structure

of graph G′
n. We now graphically compute βkn , k = 0, 1, 2.

Figures 10–12 show, respectively, all the possible configura-

tions of matchings in �0
n+1, �1

n+1 and �2
n+1, which contain

20
n+1, 21

n+1 and 22
n+1, respectively. In Figs 10–12, only the

hub vertices X
′(θ)
n and Y

′(θ)
n of G

′(θ)
n , θ = 1, 2, 3, 4, forming

G′
n+1 are shown explicitly, with filled circles denoting covered

vertices and empty circles denoting vacant vertices. Note that
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FIGURE 10. Illustration of all possible configurations and their sizes

of matchings for graph G′
n+1 belonging to �0

n+1, which contain all

matchings in 20
n+1.

in Fig. 12, the iterative edge linking the two hub vertices X′
n+1

and Y ′
n+1 of G

′
n+1 will be included in the matching if both of the

two hub vertices of G′
n+1 are vacant after joining process. From

Figs 10–12, we establish recursive relations governing β0
n , β

1
n

and β2
n

β0
n+1 = max{4β0

n , 3β
0
n + β1

n , 2β
0
n + 2β1

n } , (6)

β1
n+1 = max{3β0

n + β1
n , 3β

0
n + β2

n , 2β
0
n + 2β1

n ,

2β0
n + β1

n + β2
n ,β

0
n + 3β1

n } , (7)

β2
n+1 = max{2β0

n + 2β1
n , 2β

0
n + β1

n + β2
n ,β

0
n + 3β1

n ,

2β0
n + 2β2

n ,β
0
n + 2β1

n + β2
n , 4β

1
n , 4β

0
n + 1,

3β0
n + β1

n + 1, 2β0
n + 2β1

n + 1} . (8)

With initial condition β0
1 = 0, β0

1 = 1 and β0
1 = 2, the above

equations are solved to yield β0
n = 22n−1−2

3
, β1

n = 22n−1+1
3

and

β2
n = 22n−1+4

3
, respectively. �

3.2.2. Number of matchings

Let θn denote the number of maximum matchings of G′
n.

To calculate θn, we introduce two additional quantities. Let φn
be the number of maximum matchings in �0

n, and let ϕn be the

number of maximum matchings in �1
n. For small n, quantities

φn, ϕn and θn can be easily determined by using a computer.

For example, for n = 1, θ1 = 2, φ1 = 1 and ϕ1 = 2. For large

n, they can be determined recursively as follows.

Theorem 3.4. For graph Gn, n ≥ 1, the three quantities θn, φn
and ϕn can be calculated recursively according to the following

FIGURE 11. Illustration of all possible configurations and their sizes

of matchings for graph G′
n+1 belonging to �1

n+1, which contain all

matchings in 21
n+1.

relations:

θn+1 =2θ2nφ
2
n + 2ϕ4

n + 12θnφnϕ
2
n , (9)

φn+1 =4φ2
nϕ

2
n , (10)

ϕn+1 =4θnφ
2
nϕn + 4φnϕ

3
n . (11)

with initial conditions θ1 = 2, φ1 = 1 and ϕ1 = 2.

Proof. We only prove Eq. (10), because the other two equa-

tions can be proved analogously. Since for n ≥ 1, β0
n <

β1
n < β2

n , according to Eq. (6) and Fig. 10, all maximum

matchings with size β0
n+1 in �0

n+1 are those matchings having

size 2β0
n + 2β1

n , which together with the symmetry of graph

G′
n+1, yields Eq. (10).

�

4. INDEPENDENCE NUMBER AND THE NUMBER

OF MAXIMUM INDEPENDENCE SETS

In this section, we study the independence number and the

number of MISs in the two studied self-similar scale-free

networks.
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8 C. Jiang et al.

FIGURE 12. Illustration of all possible configurations and their sizes

of matchings for graph G′
n+1 belonging to �2

n+1, which contain all

matchings in 22
n+1.

4.1. Independence number and the number of maximum

independence sets in fractal scale-free networks

We first study the independence number and the number of

MISs in fractal scale-free graph Gn.

4.1.1. Independence number

Let αn denote the independence number of graph Gn. To find

αn, we define some intermediate quantities. Note that all the

independent sets ofGn can be classified into three types:9
0
n ,9

1
n

and 92
n , where 9k

n , k = 0, 1, 2, represent the set of independent

sets, each including exactly k initial vertices of Gn. Let 8
k
n, k =

0, 1, 2, be the subset of 9k
n , where each independent set has the

largest cardinality, denoted as αkn, k = 0, 1, 2. Then, αn can be

represented as αn = max{α0
n ,α

1
n ,α

2
n}.

FIGURE 13. Illustration of all possible configurations and their sizes

of independent sets90
n+1 in graphGn+1, which contain all independent

sets in 80
n+1.

Theorem 4.1. The independence number of graph Gn, n ≥ 1,

is αn = 22n−2.

Proof. Since αn = max{α0
n ,α

1
n ,α

2
n}, the problem of determin-

ing αn is reduced to evaluating the three quantities α0
n , α

1
n and

α2
n . By using the self-similar structure, it is not difficult to prove

that quantities α0
n , α

1
n and α2

n satisfy the following relations:

α0
n+1 = max{4α0

n , 2α
0
n + 2α1

n − 1} , (12)

α1
n+1 = max{2α0

n + 2α1
n − 1,α0

n + 2α1
n + α2

n − 2} , (13)

α2
n+1 = max{2α1

n + 2α2
n − 3, 4α1

n − 2} . (14)

By definition, αkn+1, k = 0, 1, 2, is the cardinality of an

independent set in 9k
n . Below, we will show that 90

n+1, 91
n+1

and 92
n+1 can be iteratively constructed from 90

n , 9
1
n and 92

n ,

respectively. Thus, α0
n+1, α1

n+1 and α0
n+1 can be expressed in

terms of α0
n , α

1
n and α2

n , respectively. We now prove graphically

the above recursive relations given by Eqs (12)–(14).

We first prove Eq. (12). By the second construction, Gn+1

consists of four copies of Gn, G
(θ)
n , θ = 1, 2, 3, 4. By definition,

for any independent set χ in 90
n+1, the two initial vertices

Xn+1 and Yn+1 of Gn+1 do not belong to χ , implying that the

corresponding two pairs (X
(1)
n and X

(3)
n , Y

(2)
n and Y

(4)
n ) of the

identified initial vertices of G
(θ)
n , θ = 1, 2, 3, 4, are not in χ .

In addition, since the two hub verticesWn+1 and Zn+1 of Gn+1

are adjacent, at most one of them is in χ , meaning that among

the two pairs of vertices (Y
(1)
n and X

(2)
n , Y

(3)
n and X

(4)
n ), at most

one pair is in χ , see Fig. 13. Therefore, we can construct set χ

only from90
n and91

n by consideringwhether the initial vertices

of G
(θ)
n , θ = 1, 2, 3, 4, are in χ or not. Figure 13 illustrates

all possible configurations of independent sets in 80
n+1 that

include 90
n+1 as its subset. From Fig. 13, we obtain Eq. (12).

Similarly, we can prove Eqs (13) and (14), the graphical

representations of which are shown in Figs 14 and 15,

respectively.

Considering the initial conditions α0
1 = 1, α1

1 = 1 and α2
1 =

2, Eqs (12)–(14) are solved to yield α0
n = 22n−2, α1

n = 22n−2 −
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FIGURE 14. Illustration of all possible configurations and their sizes

of independent sets91
n+1 in graphGn+1, which contain all independent

sets in 81
n+1.

FIGURE 15. Illustration of all possible configurations and their sizes

of independent sets92
n+1 in graphGn+1, which contain all independent

sets in 82
n+1.

2n−1 + 1 and α2
n = 22n−2 − (n − 1)2n−1 + 1. Thus, αn =

max{α0
n ,α

1
n ,α

2
n} = 22n−2. �

4.1.2. Number of MISs

In addition to the independence number, the number of MISs

in graph Gn can also be determined exactly.

Theorem 4.2. The number of MISs in graph Gn, n ≥ 1, is

22
2n−2

.

Proof. From the proof of Theorem 1.5, we have α0
n >

α1
n > α2

n when n ≥ 2. Thus, according to Eq. (12), α0
n+1 =

max{4α0
n , 2α

0
n + 2α1

n − 1} = 4α0
n . Let xn denote the number of

MISs in graph Gn. From Fig. 13, we obtain

xn+1 = x4n, (15)

which, under the initial value x1 = 2, is solved to yield xn =

22
2n−2

. �

Theorem 4.2 shows that the number of MISs in graph Gn grows

exponentially with the number of vertices Nn.

4.2. Independence number and the number of MISs in

non-fractal scale-free networks

We continue to study the independence number and the number

of MISs in non-fractal scale-free graph G′
n.

FIGURE 16. Illustration of all possible configurations and their sizes

of independent sets90
n+1 in graphG

′
n+1, which contain all independent

sets in 80
n+1.

FIGURE 17. Illustration of all possible configurations and their sizes

of independent sets91
n+1 in graphG

′
n+1, which contain all independent

sets in 81
n+1.

4.2.1. Independence number

We classify all the independent sets of G′
n into two types: 90

n

and 91
n , where 9k

n , k = 0, 1, 2, represent the set of independent

sets, each including exactly k hub vertices of G′
n. Let 8k

n, k =

0, 1, 2, be the subset of 9k
n , where each independent set has

the largest cardinality, denoted by αkn, k = 0, 1, 2. Since there

is an edge connecting the two hub vertices X′
n and Y

′
n, set 92

n

is empty, implying α2
n = 0. Let αn denote the independence

number of G′
n. Then, αn can be expressed as αn = max{α0

n ,α
1
n}.

Theorem 4.3. The independence number of graph G′
n, n ≥ 1,

is αn = 22n−1.

Proof. Considering αn = max{α0
n ,α

1
n}, in order to determine,

we alternatively evaluate the two quantities α0
n and α1

n by using

the self-similarity of the graph. First, we show that α0
n and α1

n

obey the following recursion relations:

α0
n+1 = max{4α0

n , 2α
0
n + 2α1

n − 1, 4α1
n − 2} , (16)

α1
n+1 = 2α0

n + 2α1
n − 1 . (17)

Equations (16) and (17) be proved graphically. Figures 16 and

17 show the graphical representations of Eqs (16) and (17),

respectively.

Using the initial conditions α0
1 = 2 and α1

1 = 1, Eqs (16)

and (17) are solved to yield exact solutions for α0
n and α1

n as

α0
n = 22n−1 and α1

n = 22n−1 − 2n + 1. Then, we have αn =

max{α0
n ,α

1
n} = 22n−1 for n ≥ 1. �
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4.2.2. Number of maximum independence sets

In contrast to its fractal counterpart Gn, the non-fractal scale-

free graph G′
n has only one maximum independence set for all

n ≥ 1.

Theorem 4.4. In the non-fractal scale-free graph G′
n, n ≥ 1,

there exists a unique maximum independence set.

Proof. Let xn denote the number of MISs in G′
n. Equation (16)

and Fig. 16 show that for n ≥ 2, any MIS of G′
n+1 is in fact

the union of MISs in 80
n, of the four copies of G′

n (i.e. G
′(1)
n ,

G
′(2)
n , G

′(3)
n and G

′(4)
n ) forming G′

n+1. Thus, any MIS of Gn+1 is

determined by those of G
′(1)
n , G

′(2)
n , G

′(3)
n and G

′(4)
n . Moreover,

xn+1 = x4n. Since x1 = 1, we have xn = 1 for all n ≥ 1. �

Theorem 4.4 indicates that for all n ≥ 1, G′
n is a unique

independence graph. Furthermore, it is easy to see that the

unique MIS of G′
n, n ≥ 1, contains exactly all the vertices with

degree two that are generated at iteration n− 1.

5. DOMINATION NUMBER AND THE NUMBER

OF MDSS

In this section, we study the domination number and the num-

ber of MDSs in two self-similar scale-free networks Gn and G
′
n.

5.1. Domination number and the number of MDSs

in fractal scale-free networks

We first study the domination number and the number ofMDSs

in the fractal scale-free network Gn.

Let γn denote the domination number of graph Gn. In order

to determine γn, we classify into all the dominating sets of

Gn into three groups: Ŵ0
n , Ŵ1

n and Ŵ2
n , where Ŵk

n, k = 0, 1, 2,

represent the set of those dominating sets including exactly

k initial vertices of Gn. Moreover, let ϒk
n , k = 0, 1, 2, be

the subset of ϒk
n , where each independent set has the largest

cardinality, denoted as γ kn , k = 0, 1, 2. By definition, we have

γn = min{γ 0
n , γ

1
n , γ

2
n }.

Theorem 5.1. For n ≥ 2, the domination number of graph Gn

is γn = 5·22n−4+4
3

.

Proof. Since the problem of determining γn can be reduced

to finding γ 0
n , γ 1

n and γ 2
n , we now determine these three

intermediate quantities. To this end, we provide the following

recursion relation for n ≥ 2 governing these quantities:

γ 0
n+1 = min{4γ 0

n , 2γ
0
n + 2γ 1

n − 1, 4γ 1
n − 2} , (18)

FIGURE 18. Illustration of all possible configurations and their sizes

of dominating sets Ŵ0
n+1 in graph Gn+1 containing ϒ0

n+1.

FIGURE 19. Illustration of all possible configurations and their sizes

of dominating sets Ŵ1
n+1 in graph Gn+1 containing ϒ1

n+1.

γ 1
n+1 = min{2γ 0

n + 2γ 1
n − 1, γ 0

n + 2γ 1
n + γ 1

n − 2,

2γ 1
n + 2γ 2

n − 3} , (19)

γ 2
n+1 = min{4γ 1

n − 2, 2γ 1
n + 2γ 2

n − 3, 4γ 2
n − 4} . (20)

Equations (18)–(20) can all be proved graphically.

We first prove Eq. (18). According to Fig. 3, Gn+1 is consist

of four copies of Gn, G
(θ)
n , θ = 1, 2, 3, 4. By definition, for any

dominating set ξ in ϒ0
n+1, both of the two initial vertices Xn+1

and Yn+1 of Gn+1 are not in ξ , implying that the corresponding

two pairs (X
(1)
n and X

(3)
n , Y

(2)
n and Y

(4)
n ) of identified initial

vertices of G
(θ)
n , θ = 1, 2, 3, 4, are not in ξ . In addition,

according to the number of hub vertices in a dominating sets

belonging ϒ0
n+1, the dominating sets in ϒ0

n+1 can be further

sorted into three disjoint subsets. Figure 18 illustrates all pos-

sible configurations of dominating sets in Ŵ0
n+1 that contains

all dominating sets in ϒ0
n+1. In Fig. 18, only the initial vertices

of G
(θ)
n , θ = 1, 2, 3, 4, are shown, with solid vertices being in

the dominating sets, while open vertices not. From Fig. 18, we

establish Eq. (18).

In a similar way, we can prove Eqs (19) and (20), the

graphical representations of which are provided in Figs 19 and

20, respectively.

With initial condition γ 0
2 = 4, γ 1

2 = 3 and γ 2
2 = 3, Eqs

(18)–(20) are solved to yield γ 0
n = 5·22n−4+3·2n−1−2

3
, γ 1

n =
5·22n−4+3·2n−2+1

3
and γ 2

n = 5·22n−4+4
3

. Thus, the domination

number of graph Gn is γn = min{γ 0
n , γ

1
n , γ

2
n } = γ 2

n = 5·22n−4+4
3

for all n ≥ 2. �
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FIGURE 20. Illustration of all possible configurations and their sizes

of dominating sets Ŵ2
n+1 in graph Gn+1 containing ϒ2

n+1.

5.1.1. Number of MDSs

In addition to the domination number, the number of MDSs in

graph Gn can also be determined exactly.

Theorem 5.2. The number of maximum dominating sets in

graph Gn, n ≥ 2, is 22
2n−4

.

Proof. Let yn denote the number of MDSs in graph Gn. From

Eq. (20) and Fig. 13, we know that for n ≥ 2, any MDS of

Gn+1 is in fact the union of MDSs in ϒ2
n , of the four copies of

Gn (i.e. G
(1)
n , G

(2)
n , G

(3)
n and G

(4)
n ) constituting Gn+1. Therefore,

we obtain

yn+1 = y4n, (21)

which, under the initial value y2 = 2, is solved to yield xn =

22
2n−4

. �

Theorem 5.2 shows that the number of MDSs in graph Gn

grows exponentially with the number of vertices Nn, which is

similar to the number of MISs.

5.2. Domination number and the number of MDSs in

non-fractal scale-free networks

We finally study the domination number and the number of

MDSs in the non-fractal scale-free network G′
n.

Analogously to graph G′
n, all the dominating sets in G′

n can be

classified into three sets: Ŵ0
n , Ŵ

1
n and Ŵ2

n , where Ŵk
n, k = 0, 1, 2,

represent the set of dominating sets, each including exactly

k hub vertices of G′
n. Let ϒk

n , k = 0, 1, 2, be the subset of

Ŵk
n, where each independent set has the smallest cardinality,

denoted by γ kn , k = 0, 1, 2. Then, the domination number γn
of G′

n can be expressed by γn = min{γ 0
n , γ

1
n , γ

2
n }.

Theorem 5.3. For n ≥ 3, the domination number of non-

fractal scale-free graph G′
n is γn = 22n−3+4

3
.

Proof. Since γn = min{γ 0
n , γ

1
n , γ

2
n }, we first evaluate the

quantities γ 0
n , γ

1
n and γ 2

n . In a way similar to the case of graph

FIGURE 21. Illustration of all possible configurations and their sizes

of dominating sets Ŵ0
n+1 in graph G

′
n+1 containing ϒ0

n+1.

FIGURE 22. Illustration of all possible configurations and their sizes

of dominating sets Ŵ1
n+1 in graph G

′
n+1 containing ϒ1

n+1.

FIGURE 23. Illustration of all possible configurations and their sizes

of dominating sets Ŵ2
n+1 in graph G

′
n+1 containing ϒ2

n+1.

Gn, we establish the following recursive relations governing the

three quantities γ 0
n , γ

1
n and γ 2

n :

γ 0
n+1 = min{4γ 0

n , 2γ
0
n + 2γ 1

n − 1, 4γ 1
n − 2} , (22)

γ 1
n+1 = min{2γ 0

n + 2γ 1
n − 1, γ 0

n + 2γ 1
n + γ 1

n − 2,

2γ 1
n + 2γ 2

n − 3} , (23)

γ 2
n+1 = min{4γ 1

n − 2, 2γ 1
n + 2γ 2

n − 3, 4γ 2
n − 4} . (24)

Figures 21–23 show, respectively, all the possible configu-

rations of dominating sets Ŵ0
n+1, Ŵ1

n+1 and Ŵ2
n+1 for graph

G′
n+1. From these three figures, we can establish Eqs (22)–

(24). By using the initial conditions γ 0
3 = 8, γ 1

3 = 7 and

γ 2
3 = 4, Eqs (22)–(24) are solved to yield γ 0

n = 22n−3+3·2n−2
3

,

γ 1
n = 22n−3+3·2n−1+1

3
and γ 2

n = 22n−3+4
3

. Hence, γn =

min{γ 0
n , γ

1
n , γ

2
n } = γ 2

n = 22n−3+4
3

. �
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5.2.1. Number of MDSs

In contrast to its fractal counterpart Gn, the non-fractal scale-

free graph G′
n has only one maximum independence set for all

n ≥ 3.

Theorem 5.4. In the non-fractal scale-free graph G′
n, n ≥ 3,

there exists a unique MDS.

Proof. Denote by yn the number of MDSs in G′
n. Equation (24)

and Fig. 23 show that for n ≥ 3, any MDS of G′
n+1 is actually

the union of MDSs in ϒ2
n , of the four copies of G

′
n (i.e. G

′(1)
n ,

G
′(2)
n , G

′(3)
n and G

′(4)
n ) forming G′

n+1. Thus, one obtains yn+1 =

y4n, which with the initial value y2 = 1 is solved to give yn = 1

for all n ≥ 3. �

Theorem 1.12 implies that for all n ≥ 3, G′
n has a unique MDS.

Moreover, the unique MDSs of G′
n, n ≥ 3, in fact contain

exactly all the hub and border vertices in graph G′
n−1.

6. CONCLUSION

Many real-world networks simultaneously display the striking

scale-free and self-similar properties. Prior works have shown

that the scale-free topology has an substantial effects on the

various properties of graphs, e.g. combinatorial properties. In

this paper, we studied some combinatorial problems for two

self-similar scale-free networks with identical power exponent,

both of which are constructed in an iterative manner. At any

iteration, the two networks have the same number of vertices

and the same number of edges. Although both networks bear

some resemblance, they differ in some aspects. For example,

the first one is ‘large-world’ and fractal, while the second one

is small-world and non-fractal. By using their self-similarity

and decimation technique, we provide exact expressions for

the maximum number, the matching number, the independence

number and the domination number for both networks. More-

over, we find exact or recursive solutions to the number of

maximum matchings, the number of MISs and the number of

MDSs for both graphs.

For the maximum matching problem, the matching number

of the fractal graph is about twice that of the non-fractal graph,

but in both graphs, the number of maximum matchings grows

exponentially with the number of total edges in the graphs.

With respect to the MIS problem, the independence number

of the first network is exactly half of the second network. In

addition, the number of the MISs in the first graph grows expo-

nentially with the number of vertices in the graph. In contrast,

the second graph has a unique MIS. Finally, as for the MDS

problem, the domination number of the fractal graph is about

twice as large as its non-fractal counterpart. Moreover, the

number of the MDSs in the fractal graph grows exponentially

with the vertex number, while there exists a unique MDS in the

non-fractal graph. Thus, although both graphs are self-similar

and scale-free with the same vertex number, edge number and

power exponent, they greatly differ in the studied combinatorial

aspects. Our results show that scale-free topology itself is not

sufficient to characterize combinatorial properties in power-

law graphs. Given the relevance of combinatorial problems

to various practical scenarios, our work sheds light on better

understanding the applications of combinatorial properties for

scale-free networks.
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