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Many graph products have been applied to generate complex networks with striking properties

observed in real-world systems. In this paper, we propose a simple generative model for simplicial

networks by iteratively using edge corona product. We present a comprehensive analysis of the

structural properties of the network model, including degree distribution, diameter, clustering

coefficient, as well as distribution of clique sizes, obtaining explicit expressions for these relevant

quantities, which agree with the behaviors found in diverse real networks. Moreover, we obtain exact

expressions for all the eigenvalues and their associated multiplicities of the normalized Laplacian

matrix, based on which we derive explicit formulas for mixing time, mean hitting time and the

number of spanning trees. Thus, as previous models generated by other graph products, our

model is also an exactly solvable one, whose structural properties can be analytically treated. More

interestingly, the expressions for the spectra of ourmodel are also exactly determined, which is sharp

contrast to previous models whose spectra can only be given recursively at most. This advantage

makes our model a good test bed and an ideal substrate network for studying dynamical processes,

especially those closely related to the spectra of normalized Laplacian matrix, in order to uncover

the influences of simplicial structure on these processes.
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1. INTRODUCTION

Complex networks are a powerful tool for describing and

studying the behavior of structural and dynamical aspects of

complex systems [50]. An important achievement in the study

of complex networks is the discovery that various real-world

systems from biology to social networks display some universal

topological features, such as scale-free behavior [2] and small-

world effect [67]. The former implies that the fraction of

vertices with degree d obeys a distribution of power-law form

P(d) ∼ d−γ with 2 < γ ≤ 3. The latter is characterized

by small average distance (or diameter) and high clustering

coefficient [67]. In addition to these two topological aspects,

a lot of real networks are abundant in nontrivial patterns, such

as q-cliques [66] and many cycles at different scales [35, 62].

For example, spiking neuron populations form cliques in neural

networks [22, 61], while coauthors of a paper constitute a clique

in scientific collaboration networks [54]. These remarkable

structural properties or patterns greatly affect combinatorial

[32, 72], structural [13] and dynamical [11, 70] properties of

networks and lead to algorithmic efforts on finding nontrivial

subgraphs, e.g. q-cliques [31, 48].

In order to capture or account for universal proper-

ties observed in practical networks, a lot of mechanisms,

approaches and models were developed in the community

of network science [50]. In recent years, cliques, also called

simplices, have become very popular to model complex

networks [48, 56]. Since large real-world networks are usually

made up of small pieces, for example, cliques [66], motifs [47]

and communities [21], graph products are an important and
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natural way for modeling real networks, which generate a large

graph out of two or more smaller ones. An obvious advantage

of graph operations is the allowance of tractable analysis on

various properties of the resultant composite graphs. In the past

years, various graph products have been exploited tomimic real

complex networks, including Cartesian product [30], corona

product [42, 57], hierarchical product [4–6, 58] and Kronecker

product [37, 38, 43, 44, 68] and many more [53].

Most current models based on graph operations either fail

to reproduce serval properties of real networks or are hard to

exactly analyze their spectral properties. For example, iterated

corona product on complete graphs only yields small cycles

[42, 57], while for most networks created by graph products,

their spectra can be determined recursively at most. On the

other hand, in many real networks [7, 63], such as brain net-

works [22, 61] and protein–protein interaction networks [69],

there exist higher-order nonpairwise relations between more

than two nodes at a time. These higher-order interactions, also

called simplicial interactions, play an important role in other

structural and dynamical properties of networks, including

percolation [10], synchronization [46, 65], disease spreading

[36, 45] and voter [27]. Unfortunately, most models generated

by graph products and generators cannot capture higher-order

interactions, and how simplicial interactions affect random

walk dynamics, i.e. mixing time [40], is still unknown.

From a network perspective, higher-order interactions can

be described and modeled by hypergraphs [20, 34]. Here we

model the higher-order interactions by simplicial complexes

[23] generated by a graph product. Although both simplicial

complexes and hypergraphs can be applied for the modeling

and analysis of realistic systems with higher-order interac-

tions, they differ in some aspects. First, simplicial complexes

have a geometric interpretation [17]. For example, they can

be explained as the result of gluing nodes, edges, triangles,

tetrahedra, etc. along their faces. This interpretation for sim-

plicial complexes can be exploited to characterize the resulting

network geometry, such as network curvatures [52]. Moreover,

a higher-order interaction described by hypergraphs does not

require the presence of all low-order interactions.

In this paper, by iteratively applying edge corona product

[28] first proposed by Haynes and Lawson [24, 25] to complete

graphs or q-cliques Kq with q ≥ 1, we propose a mathemati-

cally tractable model for complex networks with various cycles

at different scales. Since the resultant networks are composed

of cliques of different sizes, we call these networks as simplicial

networks. The networks can describe simplicial interactions,

which have rich structural, spectral and dynamical properties

depending on the parameter q. Thus, they can be used to study

the influence of simplicial interactions on various dynamics.

Specifically, we present an extensive and exact analysis

of relevant topological properties for the simplicial networks,

including degree distribution, diameter, clustering coefficient

and distribution of clique sizes, which reproduce the common

properties observed for real-life networks. We also determine

exact expressions for all the eigenvalues and their multiplicities

of the transition probability matrix and normalized Laplacian

matrix. As applications, we further exploit the obtained eigen-

values to derive leading scaling for mixing time, as well as

explicit expressions for average hitting time and the number

of spanning trees. The proposed model allows for rigorous

analysis of structural properties, as previous models generated

by graph products. In contrast to existing models for which

the eigenvalues for related matrices are given recursively at

most, the eigenvalues of transition probability matrix for our

model can be exactly determined. This advantage allows to

study analytically even exactly related dynamical processes

determined by one or several eigenvalues, for example, mixing

time of random walks, which gives deep insight into behavior

for mixing time in real-life networks.

2. NETWORK CONSTRUCTION

The network family proposed and studied here is constructed

based on the edge corona product of graphs defined as follows

[24, 25, 28], which is a variant of the corona product first

introduced by Frucht and Harary [19] of two graphs. Let G1
and G2 be two graphs with disjoint vertex sets, with the former

G1 having n1 vertices and m1 edges. The edge corona G1 ⊚ G2

of G1 and G2 is a graph obtained by taking one copy of G1
and m1 copies of G2 and then connecting both end vertices

of the ith edge of G1 to each vertex in the ith copy of G2 for

i = 1, 2, . . . ,m1.

Let Kq, q ≥ 1, be the complete graph with q vertices. When

q = 1, we define Kq as a graph with an isolate vertex. Based

on the edge corona product and the complete graphs, we can

iteratively build a set of graphs, which display the striking

properties of real-world networks. Let Gq(g), q ≥ 1 and g ≥ 0,

be the network after g iterations. Then, Gq(g) is constructed in

the following way.

Definition 2.1. For g = 0, Gq(0) is the complete graph

Kq+2. For g ≥ 1, Gq(g + 1) is obtained from Gq(g) and Kq

by performing edge corona product on them: for every existing

edge of Gq(g), we introduce a copy of the complete graph Kq

and connect all its vertices to both end vertices of the edge. That

is, Gq(g+ 1) = Gq(g) ⊚Kq.

Figure 1 shows the operation for the network construction

given in Definition 2.1. Moreover, Fig. 2 illustrates the con-

struction process of Gq(g) for two particular cases of q =
1 and q = 2. Note that for q = 1, Gq(g) is reduced to

the pseudofractal scale-free web [18], which only contains

triangles but excludes other complete graphs with more than

three vertices. We also note that our model is different from

that created by copying mechanisms [8].

Let Nq(g) and Mq(g) be the number of vertices and number

of edges in graph Gq(g), respectively. Suppose Lv(g) and Le(g)
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FIGURE 1. Iterative construction approach for the network; for each

existing edge in network Gq(g), performing the operation on the right-

hand side of the arrow generates network Gq(g+ 1).

FIGURE 2. The first several iterations of Gq(g) for q = 1 and q = 2.

be the number of vertices and the number of edges generated

at iteration g. Then for g = 0, Lv(0) = Nq(0) = q + 2 and

Le(0) = Mq(0) = (q+1)(q+2)
2

. For all g ≥ 1, by Definition 2.1,

we obtain the following two relations:

Lv(g+ 1) = qMq(g) (1)

and

Le(g+ 1) =
[
(q+ 1)(q+ 2)

2
− 1

]

Mq(g), (2)

which lead to recursive relationships for Nq(g) and Mq(g) as

Mq(g+ 1) = (q+ 1)(q+ 2)

2
Mq(g) (3)

and

Nq(g+ 1) = qMq(g) + Nq(g). (4)

Considering the initial conditions Nq(0) = q+ 2 andMq(0) =
(q+1)(q+2)

2
, the above two equations are solved to obtain

Mq(g) =
[
(q+ 1)(q+ 2)

2

]g+1

(5)

and

Nq(g) = 2

q+ 3

[
(q+ 1)(q+ 2)

2

]g+1

+ 2(q+ 2)

q+ 3
. (6)

Then, the average degree of vertices in graph Gq(g) is

2Mq(g)/Nq(g), which tends to q+3 when g is large. Therefore,

the graph family Gq(g) is sparse.

In addition, inserting Equations (5) and (6) into Equations

(1) and (2) gives Lv(g) = q
[

(q+1)(q+2)
2

]g
and Le(g) =

[
(q+1)(q+2)

2
− 1

] [
(q+1)(q+2)

2

]g
for g ≥ 1, which are helpful

for the computation in the sequel.

3. STRUCTURAL PROPERTIES

In this section, we study some relevant structural characteristics

of Gq(g), focusing on degree distribution, diameter, clustering

coefficient and distribution of clique sizes.

3.1. Degree distribution

The degree distribution P(d) for a network is the probability of

a randomly selected vertex v has exactly d neighbors. When a

network has a discrete sequence of vertex degrees, one can also

use cumulative degree distribution Pcum(d) instead of ordinary

degree distribution [50], which is the probability that a vertex

has degree greater than or equal to d:

Pcum(d) =
∞
∑

d′=d
P(d′). (7)

For a graph with degree distribution of power-law form P(d) ∼
d−γ , its cumulative degree distribution is also power-law satis-

fying Pcum(d) ∼ d−(γ−1).

For every vertex in graph Gq(g), its degree can be explicitly

determined. Let dv(g) be the degree of vertex v in graph Gq(g).

When vwas generated at iteration gv, it has a degree of q+1. By

construction, for any edge incident with v at current iteration, it

will lead to q additional new edges adjacent to v at the following

iteration. Therefore,

dv(g) = (q+ 1)g−gv+1 . (8)

On the other hand, in graph Gq(g) the degree of all simultane-

ously emerging vertices is the same. Then, the number of ver-

tices with the degree (q+1)g−gv+1 is q+2 and q
[

(q+1)(q+2)
2

]gv

for gv = 0 and gv > 0, respectively.

Proposition 3.1. The degree distribution of graph Gq(g)

follows a power-law form P(d) ∼ d−γ with the power exponent

γ = 2 + ln(q+2)
ln(q+1)

− ln 2
ln(q+1)

.
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Proof. As shown above, the degree sequence of vertices in

Gq(g) is discrete. Thus, we can get the degree distribution P(d)

for d = (q + 1)g−gv+1 via the cumulative degree distribution

given by

Pcum(d) = 1

Nq(g)

∑

τ6gv

Lv(τ )

=

[
1
2
(q+ 1)(q+ 2)

]gv+1
+ q+ 2

[
1
2
(q+ 1)(q+ 2)

]g+1
+ q+ 2

. (9)

From Equation (8), we derive gv = g + 1 − ln d
ln(q+1)

. Plugging

this expression for gv into the above equation leads to

Pcum(d) = 2
ln d

ln(q+1) −g−2
[(q+ 1)(q+ 2)]

− ln d
ln(q+1) +g+2 + q+ 2

2−g−1 [(q+ 1)(q+ 2)]g+1 + q+ 2

= d
−

(
ln(q+2)
ln(q+1) +1− ln 2

ln(q+1)

)

2−g−2 [(q+ 1)(q+ 2)]g+2 + q+ 2

2−g−1 [(q+ 1)(q+ 2)]g+1 + q+ 2
.

(10)

When g → ∞, we obtain

Pcum(d) = (q+ 1)(q+ 2)

2
d

−
(
ln(q+2)
ln(q+1) +1− ln 2

ln(q+1)

)

. (11)

So the degree distribution follows a power-law form P(d) ∼
d−γ with the exponent γ = 2 + ln(q+2)

ln(q+1)
− ln 2

ln(q+1)
. �

It is not difficult to see that the power exponent γ lies in the

interval [ ln 2
ln 3

+2, 3]. Moreover, it is a monotonically increasing

function of q: when q increases from 2 to infinite, γ increases

from ln 2
ln 3

+ 2 to 3. Note that for most real scale-free networks

[50], their power exponent γ is in the range between 2 and 3.

3.2. Diameter

In a graph G, where every edge having unit length, a shortest

path between a pair of vertices u and v is a path connecting u

and v with least edges. The distance d(u, v) between u and v

is defined as the number of edges in such a shortest path. The

diameter of graph G, denoted by D(G), is the maximum of the

distances among all pairs of vertices.

Proposition 3.2. The diameter D(Gq(g)) of graph Gq(g), is

D(G1(g)) = g+ 1 for q = 1 and D(Gq(g)) = 2g+ 1 for q ≥ 2.

Proof. For the case of q = 1, D(G1(g)) = g + 1 was proved

in [71]. Below we only prove the case of q ≥ 2.

For g = 0,D(Gq(g)) = 1, the statement holds. By Definition

2.1, it is obvious that the diameter of graph Gq(g) increases at

FIGURE 3. Illustrative proof of the extended proposition.

most 2 after each iteration, which meansD(Gq(g)) ≤ 2g+1. In

order to prove D(Gq(g)) = 2g + 1, we only need to show that

for q ≥ 2 there exist two vertices in Gq(g), whose distance 2g+
1. To this end, we alternatively prove an extended proposition

that in Gq(g) there exist two pairs of adjacent vertices: u1 and

u3, u2 and u4, such that d(u1, u2) = d(u1, u4) = d(u3, u2) =
d(u3, u4) = 2g + 1. We next prove this extended proposition

by induction on g.

For g = 0, Gq(0), q ≥ 2, is the complete graph Kq+2.

We can arbitrarily choose four vertices as u1, u2, u3, u4 to

meet the condition. For g ≥ 1, suppose that the statement

holds for Gq(g − 1), see Fig. 3. In other words, there exist

two pairs of adjacent vertices: v1 and v3, v2 and v4 in Gq(g −
1), with their distances in Gq(g − 1) satisfying d(v1, v2) =
d(v1, v4) = d(v3, v2) = d(v3, v4) = 2g − 1. For Gq(g − 1),

let u1 and u3 be two adjacent vertices generated by the edge

connecting v1 and v3 at iteration g, and let u2 and u4 be two

adjacent vertices generated by the edge connecting v2 and v4
at iteration g. Then, by assumption, for the vertex pair u1
and u2 in graph Gq(g − 1), their distance obeys d(u1, u2) =
min{d(v1, v2), d(v1, v4), d(v3, v2), d(v3, v4)} + 2 = 2g + 1.

Similarly, we can prove that in Gq(g − 1), the distances of

related vertex pairs satisfy d(u1, u4) = d(u3, u2) = d(u3, u4) =
2g+ 1. �

From Equation (6), the number of vertices Nq(g) ∼
[

(q+1)(q+2)
2

]g+1
. Thus, the diameter D(Gq(g)) of Gq(g) scales

logarithmically with Nq(g), which means that the graph family

Gq(g) is small-world.

3.3. Clustering coefficient

Clustering coefficient [67] is another crucial quantity charac-

terizing network structure. In a graph G = G(V , E) with vertex

set V and edge set E , the clustering coefficientCv(G) of a vertex

v with degree dv is defined [67] as the ratio of the number ǫv
of edges between the neighbors of v to the possible maximum

value dv(dv − 1)/2, that is, Cv(G) = 2ǫv
dv(dv−1)

. The clustering

coefficient C(G) of the whole network G is defined as the

average of Cv(G) over all vertices: C(G) = 1
|V|

∑

v∈V Cv(G).

For graph Gq(g), the clustering coefficient for all vertices and

their average value can be determined explicitly.
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Proposition 3.3. In graph Gq(g), the clustering coefficient

Cv(Gq(g)) of any vertex with degree dv(g) is

Cv(Gq(g)) = q+ 1

dv(g)
. (12)

Proof. By Definition 2.1, when a vertex v was created at

iteration gv, its degree and clustering coefficient are q+1 and 1,

respectively. In any two successive iterations t and t−1 (t ≤ g),

its degrees increases by a factor of q as dv(t) = (q+1)dv(t−1).

Moreover, once its degree increases by q, then the number of

edges between its neighbors increases by q(q+ 1)/2. Then, in

network Gq(g), the clustering coefficient Cv(Gq(g)) of vertex v

with degree dv(g) is

Cv(Gq(g)) =
q(q+1)

2
+ dv(g)−q−1

q
q(q+1)

2

dv(g)(dv(g)−1)
2

= q+ 1

dv(g)
, (13)

as claimed by the proposition. �

Thus, in graph Gq(g), the clustering coefficient of any vertex

is inversely proportional to its degree, a scaling observed in

various real-world networked systems [59].

Proposition 3.4. For all g ≥ 0, the clustering coefficient of

Gq(g) is

C(Gq(g)) =
[

(q+1)2(q+2)
2

]g+1
+ q2 + 4q+ 4

q2+4q+5
(q+1)(q+3)

[
(q+1)2(q+2)

2

]g+1
+ (q+2)(q2+4q+5)

q+3
(q+ 1)g

. (14)

Proof. By using Proposition 3.3, the quantity C(Gq(g)) can be

calculated by

C(Gq(g)) = 1

Nq(g)

( g
∑

gv=0

Lv(gv) · q+ 1

dv(g)

)

= 1

Nq(g)

{
(q+ 2)

(q+ 1)g
+

g
∑

gv=1

q

[
(q+ 1)(q+ 2)

2

]gv q+ 1

(q+ 1)g−gv+1

}

=

[
(q+1)2(q+2)

2

]g+1
+ q2 + 4q+ 4

q2+4q+5
(q+1)(q+3)

[
(q+1)2(q+2)

2

]g+1
+ (q+2)(q2+4q+5)

q+3
(q+ 1)g

.

(15)

This finishes the proof. �

From Proposition 3.4, we can see that the clustering coeffi-

cient of graph Gq(g) is very high. For large g, the clustering

coefficient Gq(g) converges to a large constant as

lim
g→∞

C(Gq(g)) = q2 + 4q+ 3

q2 + 4q+ 5
. (16)

Thus, similarly to the degree exponent γ , clustering coefficient

C(Gq(g)) is also dependent on q, with large q corresponding to

large C(Gq(g)). When q → ∞, the clustering coefficient of the

graph tends to 1.

3.4. Distribution of clique sizes

It is apparent that graph Gq(g) contains many cliques as sub-

graphs. Let Nk(Gq(g)) denote the number of k-cliques in graph

Gq(g). Since graph Gq(0) is a q + 2 complete graph, the

maximum clique size in it is q + 2. Then in Gq(0) the number

Nk(Gq(0)) of k-cliques is the combinatorial number Ckq+2 =
(q+2)!

k!(q+2−k)! for k = 2, 3, . . . , q + 2, and is 0 for k > q + 2. For

graph Gq(g) with g ≥ 1, the number of 2-cliques equals the

number of edges, while for cliques with size more than 2, we

have the following proposition.

Proposition 3.5. For g ≥ 0, we have

Nk(Gq(g)) =

[
(q+1)(q+2)

2

]g+1
− 1

(q+1)(q+2)
2

− 1

(q+ 2)!

k! (q+ 2 − k)!
, (17)

for k = 3, 4, . . . , q+2. Moreover, Nk(Gq(g)) = 0, for k > q+2.

Proof. The proposition is naturally satisfied in graph Gq(0).

Thus, we only need to prove the proposition for g ≥ 1. By

definition, when g ≥ 1, Gq(g) is obtained from Gq(g − 1) by

introducing a new q-complete graph for every edge. Then, all

the k-cliques in Gq(g) can be partitioned into two parts: (i) the

k-cliques in Gq(g−1) and (ii) the k-cliques that contain at least

one newly introduced vertex.

For part (i), the number of k-cliques isNk(Gq(g−1)). For part

(ii), every newly introduced vertex is only connected to other

vertices in a newly created q + 2 complete graph generated

by an edge of Gq(g − 1). Any k-clique containing this newly

introduced vertex must be a subgraph of the same q + 2

complete graph containing the vertex. The number of new q+2

complete graphs equals the number Mq(g − 1) of edges in

Gq(g− 1), and in every new q+ 2 complete graph, the number

of k-cliques is the combinatorial number Ckq+2 for k ≤ q + 2.

Since in every new q+2 complete graph, there are only two old

vertices, each of its k-clique subgraph with k ≥ 3 includes at

least one new vertex. Thus, for part (ii) the number of k-cliques

can be calculated byMq(g− 1)Ckq+2 for 3 ≤ k ≤ q+ 2, and is

obviously 0 for k > q+ 2.
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Combining the above results, we have that for g ≥ 1,

Nk(Gq(g)) = Nk(Gq(g− 1)) +Mq(g− 1)Ckq+2, (18)

for 3 ≤ k ≤ q+2, andNk(Gq(g)) = Nk(Gq(g−1)) for k > q+2.

Together withMq(g− 1) =
[

(q+1)(q+2)
2

]g
, Ckq+2 = (q+2)!

k!(q+2−k)! ,

and the initial values for Gq(0), the above recursive relation is

solved to obtain the proposition. �

4. SPECTRA OF PROBABILITY TRANSITION

MATRIX AND NORMALIZED LAPLACIAN MATRIX

Let Ag = A(Gq(g)) denote the adjacency matrix of graph

Gq(g), the entries Ag(i, j) of which are defined as follows:

Ag(i, j) = 1 if the vertex pair of i and j is adjacent in Gq(g) by

an edge denoted by i ∼ j, or Ag(i, j) = 0 otherwise. The vertex-

edge incident matrix Rg = R(Gq(g)) of graph Gq(g) is an

Nq(g)×Mq(g) matrix, the entries Rg(v, e) of which are defined

in the following way: Rg(v, e) = 1 if vertex v is incident to edge

e, and Rg(v, e) = 0 otherwise. The diagonal degree matrix of

Gq(g) is Dg = D(Gq(g)) = diag{d1(g), d2(g), . . . , dNq(g)(g)},
where the ith nonzero entry is the degree di(g) of vertex i in

graph Gq(g). The Laplacian matrix Lg = L(Gq(g)) of graph

Gq(g) is Lg = Dg − Ag. The transition probability matrix of

Gq(g), denoted by Pg = P(Gq(g)), is defined by Pg = D−1
g Ag,

with the (i, j)th element Pg(i, j) = 1/di(g) representing the

transition probability for a walker going from vertex i to vertex

j in graph Gq(g). Matrix Pg is asymmetric but is similar to

the normalized adjacency matrix Ãg(Gq(g)) = Ãg of graph

Gq(g) defined by Ãg = D
− 1

2
g AgD

− 1
2

g , since Ãg = D
− 1

2
g PgD

1
2
g .

By definition, the (i, j)th entry of matrix Ãg is Ãg(i, j) =
Ag(i,j)√

di(g)
√
dj(g)

. Thus, matrix Ãg is real and symmetric and has the

same set of eigenvalues as the transition probability matrix Pg.

For graph Gq(g), its normalized Laplacian matrix L̃g(Gq(g)) =
L̃g is defined by L̃g = Ig − Ãg, where Ig is the Nq(g) × Nq(g)

identity matrix.

In the remainder of this section, we will study the full

spectrum of transition probability matrix Pg and normalized

Laplacian matrix L̃g for graph Gq(g). For i = 1, 2, · · · ,Nq(g),
let λi(g) = λi(Gq(g)) and σi(g) = σi(Gq(g)) denote the

Nq(g) eigenvalues of matrices Pg and L̃g, respectively. Let 3g

and 6g denote the set of eigenvalues of matrices Pg and L̃g,

respectively, that is 3g = {λ1(g), λ2(g), . . . , λNq(g)(g)} and

6g = {σ1(g), σ2(g), . . . , σNq(g)(g)}. It is obvious that for all

i = 1, 2, · · · ,Nq(g), the relation λi(g) = 1 − σi(g) holds.

Moreover, the eigenvalues of matrices Pg and L̃g can be listed

in a nonincreasing (or nondecreasing) order as: 1 = λ1(g) ≥
λ2(g) ≥ . . . ≥ λNq(g)(g) ≥ −1 and 0 = σ1(g) ≤ σ2(g) ≤
· · · ≤ σNq(g)(g) ≤ 2.

The one-to-one correspondence λi(g) = 1 − σi(g) between

λi(g) and σi(g), for all i = 1, 2, · · · ,Nq(g), indicates that if one

determines the eigenvalues of matrix Pg, then the eigenvalues

of matrix L̃g are easily found.

Lemma 4.1. For λ 6= − 1
q+1

and λ 6= q−1
q+1

, λ is an eigenvalue

of Pg+1 if and only if (q+ 1)λ − q is an eigenvalue of Pg, and

the multiplicity of λ of Pg+1, denoted by mg+1(λ), is the same

as the multiplicity of eigenvalue (q+ 1)λ− q of Pg, denoted by

mg((q+ 1)λ − q), i.e. mg+1(λ) = mg((q+ 1)λ − q).

Proof. Let Vg+1 be the set of vertices in graph Gq(g + 1).

It can be looked upon the union of two disjoint sets Vg and

V ′
g+1 = Vg+1\Vg, where V ′

g+1 includes all the newly intro-

duced vertices by the edges in Gq(g). For all vertices in Vg+1,

we label those in Vg from 1 to Nq(g), while label the vertices

V ′
g+1 from Nq(g)+1 to Nq(g+1). In the following statement,

we represent all the vertices by their labels.

Let y = (y1, y2, . . . , yNq(g+1))
⊤ denote the eigenvector of

eigenvalue λ of matrix Pg+1, where the component yi corre-

sponds to vertex i in Gq(g+ 1). Then,

λ y = Pg+1 y. (19)

By construction, for any two adjacent old vertices u and

v in Vg, there are q vertices newly introduced by the edge

connecting u and v, which are denoted by h1, h2, . . ., hq. These

q vertices, together with u and v, form a complete graph of

q+2 vertices. Moreover, each vertex hi in set {h1, h2, . . . , hq} is
exactly connected to u, v, and other vertices in {h1, h2, . . . , hq}
excluding hi itself. Then the row in Equation (19) correspond-

ing to vertex hi, i = 1, 2, . . . , q, can be written as

λ yhi =
Nq(g+1)

∑

j=1

Pg+1(hi, j)yj

= 1

dhi(g+ 1)

∑

j∼hi
yj

= 1

q+ 1
(yu + yv + yh1 + . . . + yhi−1

+ yhi+1
+ . . . + yhq) , (20)

Adding 1
q+1

yhi to both sides of the above equation yields

(

λ + 1

q+ 1

)

yhi = 1

q+ 1



yu + yv +
q

∑

j=1

yhj



 , (21)

for all i = 1, 2, . . . , q. Therefore, for λ 6= − 1
q+1

,

yh1 = yh2 = . . . = yhq . (22)
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Combining Equations (21) and (22), we can derive that for

λ 6= q−1
q+1

yhi = 1

(q+ 1)λ − q− 1
(yu + yv) (23)

holds for i = 1, 2, . . . , q. According to Equation (19), we can

also express the rows corresponding to components yu and yv.

For the row associated with component yu, we have

λ yu =
Nq(g+1)

∑

j=1

Pg+1(u, j)yj

= 1

du(g+ 1)







∑

j≤Nq(g)
j∼u

yj +
∑

j>Nq(g)
j∼u

yj






. (24)

By Definition 2.1, for an old vertex u, all its adjacent vertices in

V ′
g+1 are introduced by the edges between u and its neighbor-

ing vertices in Vg. Thus, combining Equations (23) and (24),

we derive

λ yu = 1

du(g+ 1)







∑

j≤Nq(g)
j∼u

yj +
∑

j≤Nq(g)
j∼u

q(yu + yj)

(q+ 1)λ − q− 1






.

(25)

Considering du(g + 1) = (q + 1)du(g), Equation (25) can be

recast as

(

(q+ 1)λ − q

(q+ 1)λ − q− 1

)

yu

= 1

du(g)

∑

j≤Nq(g)
j∼u

(

1 + q

(q+ 1)λ − q− 1

)

yj. (26)

When λ 6= − 1
q+1

and λ 6= q−1
q+1

, the above equation is

simplified as

[(q+ 1)λ − q] yu = 1

du(g)

∑

j≤Nq(g)
j∼u

yj

=
Nq(g)
∑

j=1

Pg(u, j)yj, (27)

which implies if y = (y1, y2, . . . , yNq(g), . . . , yNq(g+1))
⊤ is

an eigenvector of matrix Pg+1 associated with eigenvalue λ,

then ỹ = (y1, y2, . . . , yNq(g))
⊤ is an eigenvector of matrix Pg

associated with eigenvalue (q+ 1)λ − q.

On the other hand, suppose that ỹ = (y1, y2, . . . , yNq(g))
⊤

is an eigenvector of matrix Pg associated with eigenvalue

(q + 1)λ − q, then y = (y1, y2, . . . , y, . . . , yNq(g+1))
⊤ is an

eigenvector of matrix Pg+1 associated with eigenvalue λ if and

only if its components yi, i = Nq(g) + 1, Nq(g) + 2, . . .,

Nq(g+1), can be expressed by Equation (23). Thus, the number

of linearly independent eigenvectors of λ is the same as that of

(q+1)λ−q. Since bothPg andPg+1 are normalmatrices, which

are diagonalizable, themultiplicity of λ (or (q+1)λ−q) is equal
to the number of its linearly independent eigenvectors. Hence,

mg+1(λ) = mg((q+ 1)λ − q). �

Lemma 4.1 indicates that except λ 6= − 1
q+1

and
q−1
q+1

, all

eigenvalues λ of matrix Pg+1 can be derived from those of

matrix Pg. However, it is easy to check that both− 1
q+1

and
q−1
q+1

are eigenvalues of matrix Pg+1. Moreover, their multiplicities

can be determined explicitly. The following lemma gives the

multiplicity of − 1
q+1

, while the multiplicity of
q−1
q+1

will be

provided later.

Lemma 4.2. The multiplicity of − 1
q+1

as an eigenvalue of

matrix Pg+1 is (q − 1)Mq(g) + Nq(g), i.e. mg+1(− 1
q+1

) =
(q− 1)Mq(g) + Nq(g).

Proof. Let y = (y1, y2, . . . . . . , yNq(g+1))
⊤ be an eigenvector

associated with eigenvalue − 1
q+1

of matrix Pg+1. Then,

− 1

q+ 1
y = Pg+1 y. (28)

For an edge ex, x = 1, 2 . . . ,Mq(g), in graph Gq(g) with

end vertices u and v, at iteration g + 1, it will generate q

vertices h1, h2, . . ., hq in V
′
g+1. Then, the row in Equation (28)

corresponding to vertex hi, i = 1, 2, . . . , q, can be expressed by

− 1

q+ 1
yhi =

Nq(g+1)
∑

j=1

Pg+1(hi, j) yj

= 1

q+ 1
(yu + yv + yh1 + . . . + yhi−1

+ yhi+1 + . . . + yhq), (29)

which is equivalent to

q
∑

i=1

yhi = −(yu + yv). (30)
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8 Y. Wang et al.

On the other hand, the row in Equation (28) corresponding

to vertex u can be expressed as

− 1

q+ 1
yu = 1

du(g+ 1)







∑

j≤Nq(g)
j∼u

yj +
∑

j>Nq(g)
j∼u

yj






. (31)

Note that Equation (30) holds for every pair of adjacent vertices

in graphGq(g) and the q new vertices it generates at iteration g+
1. Plugging Equation (30) into the right-hand side of Equation

(31) leads to

1

du(g+ 1)







∑

j≤Nq(g)
j∼u

yj +
∑

j>Nq(g)
j∼u

yj







= 1

du(g+ 1)







∑

j≤Nq(g)
j∼u

yj +
∑

j≤Nq(g)
j∼u

−(yu + yj)







= 1

du(g+ 1)







∑

j≤Nq(g)
j∼u

−yu







= − 1

(q+ 1)
yu. (32)

Therefore, the constraint on y in Equation (28) is equivalent to

the constraint provided by Mq(g) equations in Equation (30).

The matrix form of theseMq(g) equations can be written as










1 1 · · · 1
1 1 · · · 1

−R⊤
g

. . .

· · ·
1 1 · · · 1










y = 0, (33)

where R⊤
g is the transpose of Rg and the unmarked entries are

vanishing. It is straightforward that the right partition of the

matrix in Equation (33) is anMq(g)×qMq(g)matrix, with each

row corresponding to an edge ex, x = 1, 2, . . . ,Mq(g), in graph

Gq(g). Moreover, in each row associated with ex, 1 repeats q

times, corresponding to the q vertices newly created by edge

ex.

Since the row vectors of the matrix in Equation (33) are

linearly independent, the dimension of the solution space of

Equation (33) is Nq(g+ 1) −Mq(g) = (q− 1)Mq(g) +Nq(g).

Therefore, the multiplicity of eigenvalue− 1
q+1

for matrix Pg+1

is (q− 1)Mq(g) + Nq(g). �

Theorem 4.3. Let 3g, g ≥ 0, be the set of the Nq(g) eigen-

values λ1(g), λ2(g), . . ., λNq(g)(g) for matrix Pg, satisfying

1 = λ1(g) ≥ λ2(g) ≥ . . . ≥ λNq(g)(g) ≥ −1. Then the

Nq(g + 1) eigenvalues for Pg+1 forming the set 3g+1 can be

listed in a descending order as

3g+1 =
{

λ1(g) + q

q+ 1
,
λ2(g) + q

q+ 1
, . . . ,

λNq(g)(g) + q

q+ 1
,

q− 1

q+ 1
,
q− 1

q+ 1
, . . . ,

q− 1

q+ 1
︸ ︷︷ ︸

Mq(g)−Nq(g)

,

− 1

q+ 1
,− 1

q+ 1
, . . . ,− 1

q+ 1
︸ ︷︷ ︸

(q−1)Mq(g)+Nq(g)

}

. (34)

Proof. We prove this theorem by induction on g. First, for g =
0, it is easy to verify that the statement holds. For graph Gq(g),

g ≥ 1, assume that the relation between 3g−1 and 3g is valid.

We now prove that the result is true for graph Gq(g+ 1).

For each eigenvalue λi(g) ∈ 3g, i = 1, 2, . . . ,Nq(g), we

have λi(g) > −1 by the assumption. Therefore, for i =
1, 2, . . . ,Nq(g),

λi(g) + q

q+ 1
>
q− 1

q+ 1
, (35)

which implies
λi(g)+q
q+1

6= q−1
q+1

and
λi(g)+q
q+1

6= − 1
q+1

. By Lemma

4.1,
λi(g)+q
q+1

is an eigenvalue of Pg+1 with the same multiplicity

of λi(g) as an eigenvalue of Pg, namely,

mg+1

(
λi(g) + q

q+ 1

)

= mg (λi(g)) . (36)

Moreover, by Lemma 4.1, for each eigenvalue λ of Pg+1

satisfying λ 6= − 1
q+1

and λ 6= q−1
q+1

, (q + 1)λ − q must be

an eigenvalue of Pg, which means λ can be expressed by as

λ = λi(g)+q
q+1

with i ∈ {1, 2, . . . ,Nq(g)}. Therefore, the sum of

multiplicity of all eigenvalues ofPg+1 excluding− 1
q+1

and
q−1
q+1

is Nq(g), that is,

mg+1

(

λ /∈
{

− 1

q+ 1
,
q− 1

q+ 1

})

= Nq(g). (37)
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We proceed to compute the multiplicity mg+1

(
q−1
q+1

)

of

eigenvalue
q−1
q+1

for matrix Pg+1, which obeys

mg+1

(

− 1

q+ 1

)

+ mg+1

(
q− 1

q+ 1

)

+ mg+1

(

λ /∈
{

− 1

q+ 1
,
q− 1

q+ 1

})

= Nq(g+ 1). (38)

Using Equation (37) and Lemma 4.2, one obtains

mg+1

(
q− 1

q+ 1

)

= Mq(g) − Nq(g). (39)

Combining Equations (35), (36) and (39) and Lemma 4.2 yields

(34). �

For g = 0, Gq(0) is a complete graph with q + 2 vertices.

The set of the eigenvalues of matrix P0 is

30 =
{

1,− 1

q+ 1
,− 1

q+ 1
, . . . ,− 1

q+ 1

}

. (40)

By recursively applying Theorem 4.3, we can obtain all the

eigenvalues of matrix Pg for g ≥ 1.

Using Theorem 4.3 and the one-to-one correspondence

between matrices L̃g and P̃g, we can also obtain relation for

the set of eigenvalues for L̃g and L̃g+1.

Theorem 4.4. Let 6g, g ≥ 0, be the set of the Nq(g) eigen-

values σ1(g), σ2(g), . . ., σNq(g)(g) for matrix L̃g, satisfying

0 = σ1(g) ≤ σ2(g) ≤ . . . ≤ σNq(g)(g) ≤ 2. Then the Nq(g+ 1)

eigenvalues for L̃g+1 forming the set 6g+1 can be listed in an

increasing order as

6g+1 =
{

σ1(g)

q+ 1
,
σ2(g)

q+ 1
, . . . ,

σNq(g)(g)

q+ 1
,

2

q+ 1
,

2

q+ 1
, . . . ,

2

q+ 1
︸ ︷︷ ︸

Mq(g)−Nq(g)

,
q+ 2

q+ 1
,
q+ 2

q+ 1
, . . . ,

q+ 2

q+ 1
︸ ︷︷ ︸

(q−1)Mq(g)+Nq(g)

}

.

(41)

Proof. The proof is easily obtained by combining the relation

λi(g) = 1 − σi(g) and Theorem 4.3. �

The set 60 of eigenvalues for matrix L̃0 is 60 =
{

0,
q+2
q+1

,
q+2
q+1

, . . . ,
q+2
q+1

}

. For g ≥ 1, by recursively applying

Theorem 4.4, we can obtain the exact expressions for all

eigenvalues for matrix L̃g for any q and g, given by

6g =
{

0,
q+ 2

(q+ 1)g+1
,

q+ 2

(q+ 1)g+1
, . . . ,

q+ 2

(q+ 1)g+1

︸ ︷︷ ︸

q+1

,

2

(q+ 1)g
,

2

(q+ 1)g
, . . . ,

2

(q+ 1)g
︸ ︷︷ ︸

Mq(0)−Nq(0)

,

q+ 2

(q+ 1)g
,
q+ 2

(q+ 1)g
, . . . ,

q+ 2

(q+ 1)g
︸ ︷︷ ︸

(q−1)Mq(0)+Nq(0)

,

2

(q+ 1)g−1
,

2

(q+ 1)g−1
, . . . ,

2

(q+ 1)g−1

︸ ︷︷ ︸

Mq(1)−Nq(1)

,

q+ 2

(q+ 1)g−1
,

q+ 2

(q+ 1)g−1
, . . . ,

q+ 2

(q+ 1)g−1

︸ ︷︷ ︸

(q−1)Mq(1)+Nq(1)

,

· · · · · · ,
2

q+ 1
,

2

q+ 1
, . . . ,

2

q+ 1
︸ ︷︷ ︸

Mq(g−1)−Nq(g−1)

,
q+ 2

q+ 1
,
q+ 2

q+ 1
, . . . ,

q+ 2

q+ 1
︸ ︷︷ ︸

(q−1)Mq(g−1)+Nq(g−1)

}

.

(42)

5. APPLICATIONS OF THE SPECTRA

In this section, we apply the above-obtained eigenvalues and

their multiplicities of related matrices to evaluate some relevant

quantities for graph Gq(g), including mixing time, mean hitting

time also called Kemeny constant and the number of spanning

trees.

5.1. Mixing time

As is well known, the probability transition matrix P(G) of

a graph G characterizes the process of random walks on the

graph. As a classicalMarkov chain, randomwalks describe var-

ious phenomena or other dynamical processes in graphs. Many

interesting quantities about random walks can be extracted

from the eigenvalues of the probability transition matrix. In this

paper, we only consider mixing time and mean hitting time.

For an ergodic random walk on an un-bipartite graph G

with N vertices, it has a unique stationary distribution π =
(π1,π2, . . . ,πN)⊤ with

∑N
i=1 πi = 1, where πi represents the

probability that the walker is at vertex i when the random walk

converges to equilibrium state [33]. The mixing time is defined

as the expected time that the walker needs to approach the

stationary distribution. Let 1 = λ1 > λ2 ≥ λ3 ≥ · · · ≥ λN >
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−1 be the N eigenvalues for matrix P(G). Then the speed of

convergence to the stationary distribution [64] approximately

equals the reciprocal of 1 − λmax, where λmax is the second

largest eigenvalue modulus defined by λmax = max(λ2, |λN |).
Mixing time has found numerous applications in man different

aspects [40].

As our first application of eigenvalues for matrix Pg, we

use them to evaluate the mixing time for random walks on

Gq(g), for which the component of stationary distribution π

corresponding to vertex i is πi = di(g)/(2Mq(g)). According

to the above arguments, the second largest eigenvalue modulus

λmax(g) of Pg is λmax(g) = 1− q+2

(q+1)g+1 . Since the mixing time

is characterized by a parameter, it cannot be exactly determined

[64], but one can evaluate it by using the reciprocal of λmax(g).

Then, the dominating term of the mixing time for random

walks on Gq(g) is (q+ 1)g+1/(q+ 2), which scales sublinearly

with the vertex number Nq(g) as (Nq(g))
2/θ(q), where θ(q) =

2/ log(q+1)(q+2)/2(q+1) is the spectral dimension [46] of graph

Gq(g) that is a function of q. Note that for q = 1, the spectral

dimension θ(2) = 2 ln 3/ ln 2 reduces to the result obtained in

[9].

Note that it is believed that real-world networks are often fast

mixing with their mixing time at mostO(logN), where N is the

number of vertices. However, it was experimentally reported

that the mixing time of some real-world social networks is

much higher than anticipated [49]. Our obtained sublinear

scaling of mixing time on graph G supports this recent study

and sheds lights on understanding the scalings of mixing time.

5.2. Mean hitting time

Our second application for our obtained eigenvalues is the

mean hitting time. For a random walk on graph G, the hitting

timeHij, also called first-passage time [15, 51, 60], from vertex

i to vertex j, is defined as the expected time taken by a walker

starting from vertex i to reach vertex j for the first time. The

mean hitting time H, also known as the Kemeny constant, is

defined as the expected time for a random walker going from

a vertex i to another vertex j that is chosen randomly from all

vertices in G according to the stationary distribution [1, 41]:

H =
n

∑

j=2

πjHij. (43)

Interestingly, the quantity H is independent of the starting

vertex i and can be expressed in terms of the N − 1 nonzero

eigenvalues σi, i = 2, 3, · · · ,N, of the normalized Laplacian

matrix L̃(G) for graph G, given by [1, 41]

H =
N

∑

i=2

1

σi
. (44)

Mean hitting time can be applied to measure the efficiency

of user navigation through the World Wide Web [39] and

the efficiency of robotic surveillance in network environments

[55]. We refer to the reader to [29] for many other applications

of mean hitting time.

In this subsection, we use the eigenvalues of the normalized

Laplacian matrix for graph Gq(g) to compute the mean hitting

time of Gq(g).

Theorem 5.1. Let Hq(g) be the mean hitting time for random

walk in Gq(g). Then, for all g ≥ 0,

Hq(g) =
[

(q+ 1)2

q+ 2
− 3(q+ 1)

2

]

(q+ 1)g

+ (q+ 1)(3q+ 7)

2(q+ 3)

[
(q+ 1)(q+ 2)

2

]g

+ q+ 1

q+ 3
.

(45)

Proof. For g = 0, by using (40), one obtains Hq(0) = (q+1)2

(q+2)
.

For g ≥ 1, according to Theorem 4.4 and Equation (44), we

have

Hq(g+ 1)

= q+ 1

2

(

Mq(g) − Nq(g)
)

+ q+ 1

q+ 2

(

(q− 1)Mq(g) + Nq(g)
)

+
Nq(g)
∑

i=2

q+ 1

σi(g)

= 3q(q+ 1)

2(q+ 2)
Mq(g) − q(q+ 1)

2(q+ 2)
Nq(g) + (q+ 1)Hq(g), (46)

which can be rewritten as

Hq(g+ 1) − (q+ 1)(3q+ 7)

2(q+ 3)

[
(q+ 1)(q+ 2)

2

]g+1

− q+ 1

q+ 3

= (q+ 1)

{

Hq(g) − (q+ 1)(3q+ 7)

2(q+ 3)

[
(q+ 1)(q+ 2)

2

]g

− q+ 1

q+ 3

}

. (47)

With the initial condition Hq(0) = (q+1)2

(q+2)
, Equation (47) is

solved to obtain (45). �

Theorem 5.1 shows that for g → ∞, the dependence of

mean hitting time Hq(g) on the number Nq(g) of vertices in

graph Gg(g) is Hq(g) ∼ Nq(g), which implies that the Hq(g)

behaves linearly with Nq(g).

Section A: Computer Science Theory, Methods and Tools
The Computer Journal, Vol. 00 No. 0, 2021

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/advance-article/doi/10.1093/com
jnl/bxab070/6307490 by guest on 23 August 2021



Modeling Higher-Order Interactions 11

5.3. The number of spanning trees

A spanning tree of an undirected graph G = (V , E) with N

vertices is a subgraph of G, which is a tree including all the

N vertices. Let τ(G) denote the number of spanning trees in

graph G. It has been shown [12, 14] that τ(G) can be expressed

in terms of the N − 1 nonzero eigenvalues for normalized

Laplacian matrix of G and the degrees of all vertices in G:

τ(G) =
∏

i∈V di
∏N

i=2 σi(G)
∑

i∈V di
. (48)

The number of spanning trees is an important graph invari-

ant. In the sequel, we will use the above-obtained eigenvalues

to determine this invariant for graph Gq(g).

Theorem 5.2. Let τq(g) = τ(Gq(g)) be the number of

spanning trees in graph Gq(g). Then, for all g ≥ 0,

τq(g) = 2
2(q+1)

q(q+3)2

[
(q+1)(q+2)

2

]g+1
−

(
q+1
q+3

)

g− (q+1)2(q+2)

q(q+3)2

· (q+ 2)
2(q2+2q−1)

q(q+3)2

[
(q+1)(q+2)

2

]g+1
+

(
q+1
q+3

)

g+ q3+2q2−q+2

q(q+3)2 . (49)

Proof. First, by Theorem 4.4, we derive the relation for the

product of all the nonzero eigenvalues for normalized Lapla-

cian matrix for graph Gq(g+ 1) and Gq(g):

Nq(g+1)
∏

i=2

σi(g+ 1)

=
(

2

q+ 1

)Mq(g)−Nq(g)(q+ 2

q+ 1

)(q−1)Mq(g)+Nq(g) Nq(g)∏

i=2

σi(g)

q+ 1

= 2Mq(g)−Nq(g)(q+ 2)
(q−1)Mq(g)+Nq(g)

(q+ 1)qMq(g)+Nq(g)−1

Nq(g)
∏

i=2

σi(g). (50)

Second, we derive the relation be between the product of

degrees of all vertices in Gq(g+ 1) and the product of degrees

of all vertices in Gq(g). For Gq(g + 1), the degree of all the

new vertices in V ′
g+1 that were generated at iteration g + 1 is

q + 1, while for each i of those old vertices in Vg, we have

di(g+ 1) = (q+ 1)di(g). Then,
∏

i∈Vg+1

di(g+ 1) =
∏

i∈V ′
g+1

di(g+ 1)
∏

i∈Vg
di(g+ 1)

= (q+ 1)qMq(g)
∏

i∈Vg
(q+ 1)di(g)

= (q+ 1)qMq(g)+Nq(g)
∏

i∈Vg
di(g). (51)

Finally, the sum of degrees of all vertices in Gq(g) is equal

to 2Mq(g). Then, combining Equations (5), (48), (50) and (51),

we obtain the following recursive relation for τq(g + 1) and

τq(g):

τq(g+ 1) = 2Mq(g)−Nq(g)+1(q+ 2)(q−1)Mq(g)+Nq(g)−1τq(g).

(52)

Considering the expressions forMq(g) and Nq(g) in Equations

(5) and (6), we obtain

τq(g+ 1) = 2
q+1
q+3

[
(q+1)(q+2)

2

]g+1
− q+1
q+3

× (q+ 2)
q2+2q−1
q+3

[
(q+1)(q+2)

2

]g+1
+ q+1
q+3 τq(g). (53)

By using (40) and the fact that the degree of all nodes in Gq(0)

is q + 1, one obtains τq(0) = τ(Kq+2) = (q+ 2)q. With this

result, Equation (53) is solved to yield (49). �

6. CONCLUSION

For many graph products of two graphs, one can analyze

the structural and spectral properties of the resulting graph,

expressing them in terms of those corresponding the two

graphs. Because of this strong advantage, many authors have

used graph products to generate realistic networks with cycles

at different scales. In this paper, by iteratively using the edge

corona product, we proposed a minimal model for complex

networks called simplicial networks, which can capture group

interactions in real networks, characterized by a parameter q.

We then provided an extensive analysis for relevant topological

properties of the model, most of which are dependent on q.

We show that the resulting networks display some remarkable

characteristics of real networks, such as nontrivial higher-order

interaction, power-law distribution of vertex degree, small

diameter and high clustering coefficient.

Furthermore, we found exact expressions for all the eigenval-

ues and their multiplicities of the transition probability matrix

and normalized Laplacian matrix of our proposed networks.

Using these obtained eigenvalues, we further evaluated mixing

time, as well as mean hitting time for random walks on the

networks. The former scales sublinearly with the vertex num-

ber, while the latter behaves linearly with the vertex number.

The sublinear scaling of mixing time is contrary to previous

knowledge that mixing time scales at most logarithmically with

the vertex number. We also used the obtained eigenvalues to

determine the number of spanning trees in the networks. Thus,

in addition to the advantage of networks generated by other

graph products, the proposed networks have another obvious

advantage that both the eigenvalues and their multiplicities of

relevant matrix can be analytically and exactly determined,

since for previous networks created by graph products, the

eigenvalues are only obtained recursively at most. The explicit

expression for each eigenvalue facilitates to study those dynam-

ical processes determined by one or several particular eigenval-

ues, such as mixing time considered here.
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It should be mentioned that many real networks are weighted

with variable edge length [26]. For example, in scientific col-

laboration networks, the collaboration strength between collab-

orators can be weighted by the number of papers they coau-

thored. It is thus necessary to model these realistic networks

by weighted simplicial complexes [16]. In future, as the case

of corona product [57], one can also define extended edge

corona product of graphs and use it to build weighted scale-

free networks with rich properties matching those of real-world

networks [3].
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