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Abstract—The issue of opinion sharing and formation has
received considerable attention in the academic literature, and
a few models have been proposed to study this problem.
However, existing models are limited to the interactions among
nearest neighbors, ignoring those second, third, and higher-
order neighbors, despite the fact that higher-order interactions
occur frequently in real social networks. In this paper, we
develop a new model for opinion dynamics by incorporating
long-range interactions based on higher-order random walks.
We prove that the model converges to a fixed opinion vector,
which may differ greatly from those models without higher-
order interactions. Since direct computation of the equilibrium
opinions is computationally expensive, which involves the
operations of huge-scale matrix multiplication and inversion,
we design a theoretically convergence-guaranteed estimation
algorithm that approximates the equilibrium opinion vector
nearly linearly in both space and time with respect to the
number of edges in the graph. We conduct extensive experi-
ments on various social networks, demonstrating that the new
algorithm is both highly efficient and effective.
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I. INTRODUCTION

Recent years have witnessed an explosive growth in social
media and online social networks, which have increasingly
become an important part of our lives [1]. For example,
online social networks can increase the diversity of opinions,
ideas, and information available to individuals [2]. At the
same time, people may use online social networks to broad-
cast information on their lives and their opinions about some
topics or issues to a large audience. It has been reported
that social networks and social media have resulted in a
fundamental change of ways that people share and shape
opinions [3]. Recently, there have been a concerted effort
to model opinion dynamics in social networks, in order to
understand the effects of various factors on the formation
dynamics of opinions [4].

One of the popular opinion dynamics models is the
Friedkin-Johnsen (FJ) model [5]. Although simple and suc-
cinct, the FJ model can capture complex behavior of real
social groups by incorporating French’s “theory of social
power” [6], and thus has been extensively studied. A suffi-
cient condition for the stability of this standard model was
obtained in [7], the average innate opinion was estimated
in [8], and the unique equilibrium expressed opinion vector

was derived in [8], [9]. Some explanations of this natural
model were consequently explored from different perspec-
tives [9], [10]. In addition, some optimization problems [11]
for the FJ model were also investigated, such as opinion
maximization [12].

Other than studying the properties and interpretations,
many extensions or variants of this popular model have
been developed [13]. In [11], the impact of susceptibility
to persuasion on opinion dynamics were analyzed by in-
troducing a resistance parameter to modify the FJ model.
In [14], a varying peer-pressure coefficient was introduced
to the FJ model, aiming to explore the role of increasing
peer pressure on opinion formation. In [15], the FJ model
was augmented to include algorithmic filtering, to analyze
the effect of filter bubbles on polarization. Some multidi-
mensional extensions were developed for the FJ model [16],
[17], extending the scalar opinion to vector-valued opinions
corresponding to several settings, either independent [16] or
interdependent [17].

The above related works for opinion dynamic models
provide deep insights into the understanding of opinion
formulation, since they grasped various important aspects
affecting opinion shaping, including individual’s attributes,
interactions among individuals, and opinion update mech-
anisms. However, existing models consider only the in-
teractions among the nearest neighbors, neglecting those
interactions among second-order, third-order, and higher-
order nearest neighbors, in spite of the fact that this situation
is commonly encountered in real natural [18] and social [19],
[20] networks. For example, in social networks an individual
can make use of the local, partial, or global knowledge cor-
responding to his direct, second-order, and even higher-order
neighbors to search for opinions about a concerned issue or
to diffuse information and opinions in an efficient way. To
date, there still lack a comprehensive higher-order opinion
dynamics model on social networks, although it has been
observed that long-range non-nearest-neighbor interactions
could play a fundamental role in opinion dynamics.

In this paper, we make a natural extension of the classi-
cal FJ opinion dynamics model to incorporate the higher-
order interactions between individuals and their non-nearest
neighbors by leveraging higher-order random walks. We
prove that the higher-order model converges to a unique



equilibrium opinion vector, provided that each individual has
a non-zero resistance parameter measuring his susceptibility
to persuasion. We show that the equilibrium opinions of the
higher-order FJ model differ greatly from those of the clas-
sical FJ model, demonstrating that higher-order interactions
have a significant impact on opinion dynamics.

Basically, the equilibrium opinions of the higher-order FJ
model on a graph are the same as those of the standard FJ
model on a corresponding dense graph with a loop at each
node. That is, at each time step, every individual updates
his opinion according to his innate opinion, as well as the
currently expressed opinions of his nearest neighbors on
the dense graph. Since the transition matrix of the dense
graph is a combination of the powers of that on the original
graph, direct construction of the transition matrix for the
dense graph is computationally expensive. To reduce the
computation cost, we construct a sparse matrix, which is
spectrally close to the dense matrix, nearly linearly in both
space and time with respect to the number of edges on
the original graph. This sparsified matrix maintains the
information of the dense graph, such that the difference
between the equilibrium opinions on the dense graph and
the sparsified graph is negligible.

Based on the obtained sparsifed matrix, we further intro-
duce an iteration algorithm, which has a theoretical conver-
gence and can approximate the equilibrium opinions of the
higher-order FJ model quickly. Finally, we perform extensive
experiments on different networks of various scales, and
show that the new algorithm achieves high efficiency and
effectiveness. Particularly, this algorithm is scalable, which
can approximate the equilibrium opinions of the second-
order FJ on large graphs with millions of nodes.

II. PRELIMINARIES

In this section, some basic concepts in graph and matrix
theories, as well as the Friedkin-Johnsen (FJ) opinion dy-
namics model are briefly reviewed.

A. Graphs and Related Matrices

Consider a simple, connected, undirected social network
(graph) G = (V, E), where V = {1, 2, ..., n} is the set
of n agents and E = {(i, j)|i, j ∈ V} is the set of m
edges describing relations among nearest neighbors. The
topological and weighted properties of G are encoded in
its adjacency matrix A = (aij)n×n, where aij = aji = we

if i and j are linked by an edge e = (i, j) ∈ E with weight
we, and aij = 0 otherwise. Let Ni = {j|(i, j) ∈ E} denote
the set of neighbors of node i and di =

∑
j∈Ni

wij denote
the degree of i. The diagonal degree matrix of graph G is
defined to be D = diag(d1, d2, ..., dn), and the Laplacian
matrix of G is L = D −A. Let e i denote the i-th standard
basis vector of appropriate dimension. Let 1 (0) be the vector
with all entries being ones (zeros). Then, it can be verified
that L1 = 0. The random walk transition matrix for G is

defined as P = D−1A, which is row-stochastic (i.e., each
row-sum equals 1).

B. Friedkin-Johnsen Opinion Dynamics Model

The Friedkin-Johnsen (FJ) model is a classic opinion
dynamics model [5]. For a specific topic, the FJ model
assumes that each agent i ∈ V is associated with an
innate opinion si ∈ [0, 1], where higher values signify more
favorable opinions, and a resistance parameter αi ∈ (0, 1]
quantifying the agent’s stubbornness, with a higher value
corresponding to a lower tendency to conform with his
neighbors’ opinions. Let x (t) denote the opinion vector
of all agents at time t, with element x(t)i representing the
opinion of agent i at that time. At every timestep, each agent
updates his opinion by taking a convex combination of his
innate opinion and the average of the expressed opinion of
his neighbors in the previous timestep. Mathematically, the
opinion of agent i evolves according to the following rule:

x
(t+1)
i = αisi + (1− αi)

∑
j∈Ni

wij · x(t)j

di
. (1)

The evolution rule can be rewritten in matrix form as

x (t+1) = Λs + (I −Λ)Px (t), (2)

where Λ denotes the diagonal matrix diag(α1, α2, ..., αn),
and I is the identity matrix.

It has been proved [8] that the above opinion formation
process converges to a unique equilibrium z when αi > 0
for all i ∈ V . The equilibrium vector z can be obtained as
the unique fixed point of equation (2), i.e.,

z = (I − (I −Λ)P)
−1

Λs . (3)

The ith entry zi of z is the expressed opinion of agent i.

III. HIGHER-ORDER OPINION DYNAMICS MODEL

In this section, we generalize the FJ model to a higher-
order setting by using the random walk matrix polynomials
describing higher-order random walks.

A. Random Walk Matrix Polynomial

For a network G, its random walk matrix polynomial is
defined as follows [21]:

Definition 1: Let A and D be, respectively, the adjacency
matrix and diagonal degree matrix of a graph G. For a non-
negative vector β = (β1, β2, ..., βT ) satisfying

∑T
r=1 βr =

1, the matrix

Lβ(G) = D −
T∑

r=1

βrD
(
D−1A

)r
(4)

is a T -degree random walk matrix polynomial of G.
The Laplacian matrix L is a particular case of Lβ(G),

which can be obtained from Lβ(G) by setting T = 1 and
β1 = 1. In fact, it can be proved that, for any β, there



always exists a graph G′ with loops, whose Laplacian matrix
is Lβ(G), as characterized by the following theorem.

Theorem 1 (Proposition 25 in [21]): The random walk
matrix polynomial Lβ(G) is a Laplacian matrix.

Define matrix LGr = D − D
(
D−1A

)r
, which is a

particular case of matrix Lβ(G) corresponding to T = r
and βr = 1. In fact, LGr is the Laplacian matrix of graph
Gr, constructed from graph G by performing r-step random
walks on graph G. The ij-th element of the adjacency matrix
AGr for graph Gr is equal to the product of the degree di for
node i in G and the probability that a walker starts from node
i and ends at node j after performing r-step random walks
in G. Thus, the matrix polynomial Lβ(G) is a combination
of matrices LGr for r = 1, 2, ..., T .

Based on the random walk matrix polynomials, one can
define a generalized transition matrix P∗ = P∗β for graph
G as follows.

Definition 2: Given an undirected weighted graph G and
a coefficient vector β = (β1, β2, ..., βT ) with

∑T
r=1 βr = 1,

the matrix

P∗β =

T∑
r=1

βrP
r = I −D−1Lβ(G) (5)

is a T -order transition matrix of G with respect to vector β.
Note that the generalized transition matrix P∗ for graph G
is actually the transition matrix for another graph G′.
B. Higher-Order FJ Model

To introduce the higher-order FJ model, first modify the
update rule in equation (2) by replacing P with P∗. In other
words, the opinion vector evolves as follows:

x (t+1) = Λs + (I −Λ)
[
β1P + ...+ βTP

T
]
x (t). (6)

In this way, individuals update their opinions by incorpating
those of their higher-order neighborhoods at each timestep.
Moreover, by adjusting the coefficient vector β, one can
choose different weights for neighbors of different orders.

C. Convergence Analysis
The higher-order model has a unique equilibrium and

will converge to that equilibrium after sufficiently many
iterations, as established in the following theorems.

Theorem 2: The higher-order FJ model defined in (6) has
a unique equilibrium if αi > 0 for all i ∈ V .

Theorem 3: If αi > 0 for all i ∈ V , then the higher-
order FJ model converges to its unique equilibrium z ∗ =
(I − (I −Λ)P∗)

−1
Λs .

IV. FAST ESTIMATION OF EQUILIBRIUM OPINIONS

Since direct computation of P∗ is time consuming, here
the spectral graph sparsification technique is utilized to ob-
tain an approximation of matrix P∗. Then, a fast convergent
algorithm is developed to approximate the expressed opin-
ion vector z ∗, which avoids matrix inverse operation. The
pseudocode of this new algorithm is shown in Algorithm 1.

A. Random-Walk Matrix Polynomial Sparsification

Recall the random-walk matrix polynomial sparsification
algorithm [21]. For a given graph G = (V, E), start from
an empty graph G̃ with the same node set V and an empty
edge set. Then add M edges into the sparsifier G̃ iteratively
by a sampling technique. At each iteration, randomly pick
an edge e = (u, v) from E as an intermediate edge and an
integer r from {1, 2, ..., T} as the length of the random-walk
path. To this end, run the PATHSAMPLING(e, r) algorithm
in [21] to sample an edge by performing r-step random
walks, and add the sample edge, together with its corre-
sponding weight, into the sparsifier G̃. Note that multiple
edges will be merged into one single edges by summing
up their weights together. Finally, the algorithm generates a
sparsifier G̃ for the original graph G with no more than M
edges.

In [21], an algorithm is designed to obtain a sparsifier
G̃ with O(nε−2 log n) edges for Lβ(G), which consists of
two steps: The first step uses random walk path sampling
to get an initial sparsifier with O(Tmε−2 log n) edges. The
second step utilizes the standard spectral sparsification al-
gorithm proposed in [22] to further reduce the edge number
to O(nε−2 log n). Since a sparsifier with O(Tmε−2 log n)
edges is sparse enough for the present purposes, only the
first step will be taken, while skipping the second step, to
avoid unnecessary computations.

Algorithm 1: HODYNAMIC(G,M, s,β, t)

Input : G: a connected undirected graph;
M : the number of edges in sparsifier;
s: the innate opinion vector;
β: the coefficient vector of random walk

matrix polynomial;
t: the number of iterations;

Output : x̃ (t): the approximate equilibrium vector;
1 G̃ = (V, ∅)
2 for i = 1 to M do
3 Randomly pick an edge e = (u, v) ∈ E
4 Select an integer r from {1, 2, ..., T} at uniform as the

length of the random-walk path
5 Randomly pick an integer k ∈ {1, 2, ..., r}
6 Perform (k − 1)-step random walk from u to u0

7 Perform (r − k)-step random walk from v to ur
8 Calculate Z(p) along the length-r path p between

node u0 and node ur according to (7)
9 Add an edge (u0, ur) of weight 2rmβr

MZ
to G̃

10 P̃ = I −D−1L̃(G̃)
11 x̃ (0) = s
12 for i = 1 to t do
13 x̃ (i) = Λs + (I −Λ)P̃x̃ (i−1)

14 return x̃ (t)

To sample an edge by performing r-step random walks,
the procedure of PATHSAMPLING algorithm in [21] is char-
acterized in Lines 5-9 of Algorithm 1. To sample an edge,



first draw a random integer k from {1, 2, ..., r} and then
perform, respectively, (k − 1)-step and (r − k)-step walks
starting from two end nodes of the edge e = (u, v). This
process samples a length-r path p = (u0, u1, ..., ur). At the
same time, compute

Z(p) =
r∑

i=1

2

aui−1,ui

. (7)

The algorithm returns the two endpoints of path p as
the sample edge (u0, ur) and the quantity Z(p) for the
calculation of weight.

Theorem 4: For a graph G with random-walk matrix
polynomial

Lβ(G) = D −
T∑

r=1

βrD
(
D−1A

)r
, (8)

where
∑T

r=1 βr = 1 and βr are non-negative, one can
construct, in time O(T 2mε−2 log2 n), a (1 + ε)-spectral
sparsifier, L̃, with O(nε−2 log n) non-zeros.

Now one can approximate the generalized transition ma-
trix using the Laplacian L̃(G̃) of the sparse graph G̃:

P∗ = I −D−1Lβ(G) ≈ I −D−1L̃(G̃) = P̃
∗
. (9)

Therefore, it takes O(MT log n) time and O(M) space to
obtain the sparsifier G̃, which is computable for appropriate
size M .

B. Approximating the Equilibrium Opinions via Iteration

With the spectral graph sparsification technique, it is pos-
sible to approximate P∗ with a sparse matrix. Nevertheless,
directly computing the equilibrium still involves a matrix
inverse operation, which is computationally expensive for
large networks, such as those with millions of nodes. To
approximate the equilibrium vector z ∗ using the recurrence
defined in (6) and multiple iterations, in this section, we
develop a convergent approximation algorithm. The approx-
imation error of this algorithm can be summarized as stated
in the following theorem.

Theorem 5 (Approximation Error): For every t ≥ 0,∥∥∥x̃ (t) − z ∗
∥∥∥
∞

≤
4ε
√
n · (1− αmin)

[
1− (1− αmin)

t
]
+ (1− αmin)

t

αmin
,

where αmin = mini=1,2,..,n{αi}.
In the sequel, this approximate iteration algorithm is re-

ferred to as APPROX. It should be mentioned that Theorem 5
provides only a rough upper bound. The experiments in
Section V-C show that APPROX works well in practice,
leading to very accurate results for real networks.

Table I
STATISTICS OF REAL NETWORKS USED IN EXPERIMENTS AND

COMPARISON OF RUNNING TIME (SECONDS, s) BETWEEN EXACT AND
APPROX FOR THE UNIFORM INNATE OPINION DISTRIBUTION AND MEAN

ABSOLUTE ERRORS(×10−3).

Network n′ m′
Running time (s) Error

EXACT APPROX

HamstersterFriends 1788 12476 0.174 0.974 3.718
HamstersterFull 2000 16098 0.303 1.540 3.134
PagesTVshow 3892 17239 1.204 1.530 4.552

Facebook (NIPS) 4039 88234 1.492 6.274 1.967
PagesGovernment 7057 89429 5.857 7.679 2.622

Anybeat 12645 49132 31.448 4.730 5.896
PagesCompany 14113 52126 39.348 4.269 4.788

Gplus 23613 39182 163.525 4.329 7.152
GemsecRO 41773 125826 885.069 15.758 4.787
GemsecHU 47538 222887 946.399 28.592 3.611
PagesArtist 50515 819090 1160.469 139.565 2.746
Brightkite 56739 212945 1913.246 27.351 5.717

Livemocha* 104103 2193083 — 538.730 —
Douban* 154908 327162 — 44.166 —
Gowalla* 196591 950327 — 138.222 —

TwitterFollows* 404719 713319 — 96.850 —
Delicious* 536108 1365961 — 209.371 —

YoutubeSnap* 1134890 2987624 — 663.090 —
Hyves* 1402673 2777419 — 648.906 —

V. EXPERIMENTS ON REAL NETWORKS

In this section, we conduct extensive experiments on real-
world social networks to evaluate the performance of the
algorithm APPROX.

A. Setup

Machine Configuration and Reproducibility. Our ex-
tensive experiments run on a Linux box with 16-core
3.00GHz Intel Xeon E5-2690 CPU and 64GB of main
memory. All algorithms are programmed in Julia v1.3.1.
The source code is publicly available at https://github.com/
HODynamic/HODynamic.
Datasets. We test the algorithm on a large set of realistic
networks, all of which are collected from the Koblenz
Network Collection [23] and Network Repository [24]. For
those networks that are disconnected originally, we perform
experiments on their largest connected components. The
statistics of these networks are summarized in the first three
columns of Table I, where we use n′ and m′ to denote,
respectively, the numbers of nodes and edges in their largest
connected components. The smallest network consists of
1, 788 nodes, while the largest network has more than one
million nodes. In Table I, the networks are listed in an
increasing order of the number of nodes in their largest
connected components.
Input Generation. For each dataset, we use the network
structure to generate the input parameters in the following
way. The innate opinions are generated according to the uni-
form distribution. For the uniform distribution, we generated
the opinion si of node i at random in the range of [0, 1]. We
generate the resistance parameters uniformly to be within
the interval (0, 1).

https://github.com/HODynamic/HODynamic
https://github.com/HODynamic/HODynamic


B. Comparison between Standard FJ Model and Second-
Order FJ Model

To show the impact of higher-order interactions on
the opinion dynamics, we compare the equilibrium ex-
pressed opinions between the second-order FJ model and
the standard FJ model on four real networks: PagesTVshow,
PagesCompany, Gplus, and GemsecRO. For both models, we
generate innate opinions and resistance parameters for each
node according to the uniform distribution. We set β1 =
1, β2 = 0 for the standard FJ model, and β1 = 0, β2 = 1
for the second-order FJ model.
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Figure 1. Distribution for difference of equilibrium expressed opinions
between the standard FJ model and the second-order FJ model on four real
networks.

Figure 1 illustrates the distribution for the difference of
the final expressed opinions for each node between the
classic and second-order FJ models on four considered real
networks. It can be observed that for each of these four
networks, there are more than half nodes, for which the
difference of expressed opinions between the two models
is larger than 0.01. Particularly, there are over 10% agents,
for which the difference of equilibrium opinions is greater
than 0.1. This possibly makes them stand on the opposite
sides for different models. Thus, the opinion dynamics for
the second-order FJ model differs largely from the classic FJ
model, indicating that the effects of higher-order interactions
are not negligible.

C. Performance Evaluation

To evaluate the performance of the new algorithm AP-
PROX, we implement it on various real networks and com-
pare the running time and accuracy of APPROX with those
corresponding to the standard EXACT algorithm. For the EX-
ACT, it computes the equilibrium vector by calculating the
random-walk matrix polynomials via matrix multiplication
and directly inverting the matrix I − (I − Λ)P∗. Here,
we use the second-order random-walk matrix polynomial to
simulate the opinion dynamics with β1 = β2 = 0.5. For

APPROX, we set the number M of samples as 10× T ×m
and approximate the equilibrium vector with 100 iterations.
To objectively evaluate the running time, we enforce the
program to run on a single thread for both EXACT and
APPROX on all considered networks, except the last seven
marked with asterisks, for which we cannot run EXACT due
to the very high cost for space and time.
Efficiency. We present the running time of algorithms AP-
PROX and EXACT for all networks in Table I. For the
last seven networks, we only run algorithm APPROX since
Exact would take unfeasibly long time. For each of the
three innate opinion distributions in different networks, we
record the running time of APPROX and EXACT. From
Table I, we observe that for small networks with less than
10,000 nodes, the running time of APPROX is a little longer
than that of EXACT. Thus, APPROX shows no superiority
for small networks. However, for those networks having
more than twenty thousand nodes, APPROX significantly
improves the computation efficiency compared with EXACT.
For example, for the moderately large network GemsecRO
with 41,773 nodes, APPROX is 60× faster than EXACT.
Finally, for large graphs APPROX shows a very obvious
efficiency advantage. Table I indicates that for those network
with over 100 thousand nodes, APPROX completes running
within 12 minutes, whereas EXACT fails to run. We note
that for large networks, the running time of APPROX grows
nearly linearly with respect to m′, consistent with the above
complexity analysis, while the running time of EXACT grows
as a cube power of n′.
Accuracy. In addition to the high efficiency, the new al-
gorithm APPROX provides a good approximation for the
equilibrim opinion vector z ∗ = (z∗1 , z

∗
2 , ..., z

∗
n′)
> in prac-

tice. To show this, we compare the approximate results
of APPROX for second-order FJ model with exact results
obtained by EXACT, for all the examined networks shown
in Table I, except the last seven which are too big for
EXACT to handle. For each of the three distributions of
the innate opinions, Table I reports the mean absolute error
σ =

∑n′

i=1 |z∗i − z̃∗i |/n′, where z̃ ∗ = (z̃∗1 , z̃
∗
2 , ..., z̃

∗
n′)
> is the

estimated vector obtained by APPROX. From Table I, we
observe that the actual mean absolute errors σ are all less
than 0.008, thus ignorable. Furthermore, for all networks
we tested, the mean absolute errors σ are smaller than the
theoretical ones provided by Theorem 5. Therefore, the new
algorithm APPROX provides a very desirable approximation
for the equilibrium opinion vector in applications.

VI. CONCLUSION

In this paper, we presented a significant extension of
the classic Friedekin-Johnsen (FJ) model by considering
not only nearest-neighbor interactions, but also long-range
interactions via leveraging higher-order random walks. We
showed that the proposed model has a unique equilibrium
expressed opinion vector, provided that each individual



holds an innate opinion. We also demonstrated that the
resultant expressed opinion vector of the new model may be
significantly different from that of the FJ model, indicating
the important impact of higher-order interactions on opinion
dynamics.

The expressed opinion vector of the new model can be
considered as an expressed opinion vector of the FJ model
in a dense graph with a loop at every node, which has
the transition matrix as a combination of powers of the
transition matrix for the original graph. However, direct
computation of the transition matrix for the dense graph is
computationally expensive, which involves multiple matrix
multiplication and inversion operations. As a remedy, we
presented a nearly linear-time algorithm to obtain a sparse
matrix, which is spectrally similar to the original dense
matrix thereby presevering all basic information. Based on
the obtained sparse matrix, we further proposed a convergent
iteration algorithm, which approximates the equilibrium
opinion vector in linear space and time. We finally conducted
extensive experiments on diverse social networks, which
demonstrate that the new algorithm achieves both good
efficiency and effectiveness.
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