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ABSTRACT
The mean hitting time from a node i to a node j selected randomly

according to the stationary distribution of random walks is called

the Kemeny constant, which has found various applications. It was

proved that over all graphs with N vertices, complete graphs have

the exact minimum Kemeny constant, growing linearly with N .

Here we study numerically or analytically the Kemeny constant on

many sparse real-world and model networks with scale-free small-

world topology, and show that their Kemeny constant also behaves

linearly with N . Thus, sparse networks with scale-free and small-

world topology are favorable architectures with optimal scaling

of Kemeny constant. We then present a theoretically guaranteed

estimation algorithm, which approximates the Kemeny constant for

a graph in nearly linear time with respect to the number of edges.

Extensive numerical experiments on model and real networks show

that our approximation algorithm is both efficient and accurate.
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1 INTRODUCTION
As a powerful theory and analysis tool, randomwalks have received

considerable attention from the scientific community [12, 25, 36].

The fundamental quantities related to random walks include sta-

tionary distribution [43], hitting time [13, 38], mixing time [33],

and cover time [11], all of which have found wide applications in

various fields [20, 34, 46]. In the aspect of hitting time for a random

walk on a graph from one vertex i to another vertex j, it is the
expected time for the walker starting from i to visit j for the first
time. The hitting time can be used to gauge transmission costs in

wireless networks [17, 35], to design clustering algorithm [1, 9],

and to measure the importance or centrality of a vertex [47].

In addition to the intrinsic interest of hitting time itself, many

other interesting quantities associated with random walks (for ex-

ample, Kemeny constant) are encoded in or expressed in terms of

this fundamental quantity. The Kemeny constant is defined as the

expected time for a walker from a vertex to a second vertex chosen

randomly from the network according to the stationary distribution

of the random walk. The Kemeny constant has many applications

in several areas [22]. For example, it can be used to measure the

efficiency of user navigation through the World Wide Web [32],

where it can be accounted for the mean number of edges the ran-

dom surfer needs to follow before arriving at the final destination.

Again for instance, the Kemeny constant is related to the mixing

rate of an irreducible Markov chain [33], by looking upon it as the

expected time to mixing of the Markov chain [21, 28]. Moreover, the

Kemeny constant is one of the widely used criticality [14, 18, 31]

or connectivity [6] measures for a graph. Finally, in recent work

the Kemeny constant was applied to gauge the efficiency of robotic

surveillance in network environments [2, 40] and characterize the

performance of a class of noisy formation control protocols [24].

It is well-established that [27] the Kemeny constant of a graph

is determined by all the eigenvalues of the normalized Laplacian

matrix of the graph, which is encoded in the topology of the under-

lying graph. In view of its wide range of applications, the Kemeny

constant has been extensively studied [22]. In particular, the Ke-

meny constant in various networks with different topologies has

received considerable interest. For example, previous work has

studied the Kemeny constant for various trees, including Cayley
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trees [26], tree-like polymer network [54], fractal trees [55], as well

as the path graph [39]. In addition, the Kemeny constant for some

networks with cycles was also studied, such as weighted Koch net-

works [41] and extended Sierpiński graphs [42]. Finally, Palacios

and Renom [39] proved that among all N -vertex graphs, the min-

imum of the Kemeny constant is 1 + (N − 1)2/N , which can be

achieved only in the complete graphs. These works show that in

different networks the behavior of Kemeny constant is also quite

different.

It is well known that the randomwalk process is strongly affected

by the topological properties of the underlying networks [36]. Then,

an interesting question arises: of all connected networks, which

are the optimal or almost optimal, having the smallest or almost

smallest Kemeny constant? It is of practical significance, since it

is particularly useful for designing networks with particular per-

formance, such as best robustness and best efficiency of navigation

or surveillance performance. It has been verified that among all

undirected graphs the Kemeny constant is the least for complete

graphs [39], which increases linearly with the network size (number

of vertices). Nevertheless, most real-life networks are sparse with

constant average degree [37], and simultaneously exhibit the strik-

ing scale-free [5] small-world [45] topologies, which have a strong

effect on various dynamics on networks, e.g., noisy consensus [51–

53] and disease spreading [8, 44]. Until now, the role of scale-free

and small-world [45] structure on the Kemeny constant of random

walks is still not well understood. On the other hand, direct compu-

tation of the Kemeny constant by calculating the eigenvalues of the

normalized Laplacian matrix is time-consuming, which is infeasible

for large networks, especially those with millions of vertices. Then,

another question arises: Is there a fast algorithm for computing the

Kemeny constant of a general graph?

In this paper, we study the Kemeny constant for scale-free small-

world real-world and model networks. Our main work and contri-

butions are as follows. First, we consider the Kemeny constant

of sparse real networks with scale-free small-world properties,

where the ratio of the Kemeny constant to the number of nodes

approaches a constant. Second, we address the Kemeny constant

for two sparse deterministic networks [16, 57] that display the

remarkable scale-free small-world properties as observed in real

networks [37]. Through the decimation approach, we derive recur-

sive expressions for all eigenvalues of the transition matrices for

both networks, and further obtain closed-form formulas for their

Kemeny constant, which also grows as a linear function of the net-

work size, displaying an identical scaling as that of complete graphs.

Third, we study the Kemeny constant on the Barabási-Albert net-

work [5], and show that the ratio of the Kemeny constant to the

node number also tends to constants. Thus, for sparse networks

with the scale-free and small-world structural properties, their Ke-

meny constant is almost smallest. Finally, we present an algorithm

to approximately compute the Kemeny constant of a generic graph,

the running time of which is nearly linear with respect to the num-

ber of edges. We experimentally demonstrate the effectiveness and

efficiency of this algorithm on some real networks and the two

studied deterministic networks [16, 57].

2 PRELIMINARY
In this section, we introduce some basic concepts in graph theory,

random walks on a graph, and some related work for the problem

to be studied.

2.1 Graph and Matrix Notation
Let G = (V, E) denote a graph with vertex/node setV and edge

set E ⊂ V × V , the numbers of vertices and edges in which are

N = |V| and E = |E |, respectively. Then, the total degree of all
vertices is 2E, and the average degree is ⟨d⟩ = (2E)/N . A graph is

said to be simple if it has no loops and parallel edges. Throughout

this paper, all graphs considered are finite simple connected graphs,

and the terms graph and network are used indistinctly. For a vertex

i ∈ V , let Ni = {x |(x , i) ∈ E} denote the set of its neighborhood
vertices and let di = |Ni | denote the degree of i .

The N vertices in graph G are labeled by 1, 2, 3, . . . ,N , respec-

tively. The adjacency relation between the N vertices is encoded in

the adjacency matrix A = (ai j )N×N of G, where ai j = 1 if vertices

i and j are directly connected by an edge in G, and ai j = 0 other-

wise. Then, the degree of vertex i is di =
∑N
j=1 ai j . Let D denote

the diagonal degree matrix of G. The ith diagonal entry of D is di ,
while all other entries are zeros. Then, the Laplacian matrix L of

G is defined to be L = D −A.
The Laplacian matrix L of a graph G can also be expressed in

terms of its node-edge incidence matrix B ∈ RE×N , which is a

signed matrix. The entry be,v , e ∈ E and v ∈ V , of B is defined as

follows: be,v = 1 if node v is the head of edge e , be,v = −1 if node
v is the tail of edge e , and be,v = 0 otherwise. Let ei denote the i-th
standard basis vector. For an edge e ∈ E linking two nodes i and j , its

corresponding row vector can be written asbi j ≜ be = ei−ej . Then,
the Laplacian matrix can be written as L = B⊤B =

∑
e ∈E beb

⊤
e .

2.2 RandomWalks on a Graph
For a connected undirected network G, we can define an unbiased

discrete time random walk taking place on it. At any time step,

the walker starting from its current location moves to any of its

neighboring vertex with the same probability. Such a stochastic

process is described by a Markov chain [27], characterized by the

transition matrix T = D−1A, with the ij-th entry ti j = ai j/di
representing the probability of jumping to j from i in one time step.

If G is a finite non-bipartite graph, the random walk is an ergodic

Markov chain [27], which has a unique stationary distribution

π = (π1,π2, . . . ,πN )
⊤
satisfying the following three conditions:

πi = di/(2E),
∑N
i=1 πi = 1, and π⊤T = π⊤.

A fundamental quantity for random walks is hitting time, also

called first-passage time [13]. The hitting time from vertex i to
vertex j, denoted by Fi j , is the expected time for a walker starting

from i to visit j for the first time. Many other interesting quanti-

ties related to random walks can be expressed in terms of, or be

encoded in, hitting times. For example, the Kemeny constant K of

random walks on G is a weighted average of hitting times [27]:

K =
∑N
j=1 πjFi j defined as the expected time for a walker starting

from a vertex i to another vertex j selected randomly from the

vertex setV , according to the stationary distribution π .
Many important structural and dynamical properties of a net-

work are related to or determined by the spectra of its transition
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matrix. However, except for regular graphs, the transition matrixT
of a network is not symmetric. So, we introduce another matrix P
similar to T , which is defined by

P = D−
1

2AD−
1

2 = D
1

2TD−
1

2 , (1)

where D−
1

2 is a diagonal matrix with its ith diagonal entry being

1/
√
di . By definition, P is real and symmetric and thus has an iden-

tical set of eigenvalues as T . Hereafter, 0 denotes the number zero,

the zero matrix or zero vector of appropriate dimensions, and I
stands for the identity matrix of appropriate dimensions. Then, the

normalized Laplacian matrix [10, 49, 50] of a network is L = I − P .
Let λ1, λ2, λ3, . . ., λN be the N eigenvalues of transition matrix

T , which obey relation λ1 +λ2 +λ3 + · · ·+λN = 0. By construction,

all eigenvalues λi (i = 1, 2, . . . ,N ) are real, which can be rearranged

in a decreasing order as 1 = λ1 > λ2 ≥ λ3 ≥ · · · ≥ λN ≥ −1. Let
σ1, σ2, σ3, . . ., σN be the N eigenvalues of normalized Laplacian

matrix L, which can be ranked in an increasing order as 0 = σ1 <
σ2 ≤ σ3 ≤ · · · ≤ σN ≤ 2. It has been proved [27] that

K =
N∑
j=1

πj Fi j = 1 +

N∑
k=2

1

1 − λk
= 1 +

N∑
k=2

1

σk
. (2)

Thus, the Kemeny constant is a global spectral characteristic of a

network. From (2), the Kemeny constant K is independent of the

starting vertex i , it is then also referred to as eigentime identity.

2.3 Related Work
Due to the broad range of applications, the Kemeny constant has

received considerable attention [22]. Particularly, in order to un-

cover the effect of disparate topological properties on the behavior

of Kemeny constant, many groups have made concerted efforts

to this key quantity for networks with distinct topological prop-

erties. It was shown that in different networks with size N but

distinct structure, the Kemeny constant K often behaves differently

with N . For example, in Koch networks [41, 48] and small-world

trees [26, 54] such as Cayley trees, K ∼ N lnN ; in extended Sier-

piński graphs [42] and fractal trees [26, 55], K varies superlinearly

as K ∼ N θ
with 1 < θ < 2; and in the path graph, K ∼ N 2

. In

addition, it was proved that among all graphs with N nodes, the

minimum possible value of the Kemeny constant is 1+ (N − 1)2/N ,

which can be uniquely attained in the complete graphs [39] .

Previous work implies that the linear growthwith network size is

the possible minimal scaling for the Kemeny constant. A network is

called optimal if this linear scaling for the Kemeny constant can be

reached. In this sense, the complete graph is an absolutely optimal

graph. However, complete graphs are dense and cannot describe

real networked systems, which are sparse and exhibit simultane-

ously the striking scale-free [5] and small-world [45] properties.

The scale-free property means that the degree distribution P(k) of
nodes follows a power-law form P(k) ∼ k−γ with power exponent

lying between 2 and 3, while the small-world property implies that

the average distance over all pairs of nodes scales at most loga-

rithmically with the number of nodes. Thus, it is of theoretical

and practical interest to design or find optimal sparse graphs with

scale-free small-world features, where the minimal scaling for the

Kemeny constant can be achieved. Moreover, since computing Ke-

meny constant via evaluating the eigenvalues of graph Laplacian is

Table 1: Statistics of some datasets and their Kemeny con-
stant K . For a network with N nodes and E edges, we denote
the number of nodes and edges in its largest connected com-
ponent by N ′ and E ′, respectively.

Network N E N ′ E′ γ K/N ′

Hamsterster friendships 1,858 12,534 1,788 12,476 2.461 1.193

Protein 1,870 2,203 1,458 1,948 2.879 2.601

Hamster full 2,426 16,631 2,000 16,098 2.421 1.380

Human protein (Vidal) 3,133 6,149 2,783 6,007 2.132 1.517

Route views 6,474 12,572 6,474 12,572 2.462 1.246

arXiv astro-ph 18,771 198,050 17,903 196,972 2.861 1.281

CAIDA 26,475 53,381 26,475 53,381 2.509 1.206

Internet topology 34,761 107,720 34,761 107,720 2.233 1.146

Brightkite 58,228 214,078 56,739 212,945 2.481 1.426

computationally expensive for large-scale networks, it is of great

interest to develop an efficient and fast algorithm for estimating

the Kemeny constant of an arbitrary graph.

In the following sections, we will study the Kemeny constant

for scale-free small-world sparse networks and design a fast ran-

domized algorithm for approximating the Kemeny constant of a

general graph. We first study the Kemeny constant for some real

scale-free networks and show that the ratio of the Kemeny constant

to the number of vertices is constant. Then we determine the Ke-

meny constant for two deterministic scale-free small-world sparse

networks [16, 57] and the Barabási-Albert network [5], and show

that their Kemeny constants behave linearly with the network size.

Thus, scale-free networks are optimal with minimal scaling of Ke-

meny constant. Finally, we present a fast algorithm to approximate

the Kemeny constant for a graph, whose complexity scales nearly

linearly with the number of edges in the graph. Also, we test our

algorithm on many real networks, as well as the two considered

deterministic networks [16, 57].

3 THE KEMENY CONSTANT IN REALISTIC
SCALE-FREE NETWORKS

In this section, we study the Kemeny constant of some real-life

networks having a power-law degree distribution P(k) ∼ k−γ with

γ in the interval of (2, 3). We use a large collection of networks

chosen from different domains.

In Table 1, we report the Kemeny constant of some real-world

scale-free networks. All data sets are taken from the Koblenz Net-

work Collection [29]. The considered real-life networks are repre-

sentative, including social networks, information networks, techno-

logical networks, and metabolic networks. For those networks that

are disconnected originally, we compute the Kemeny constant for

their largest connected components (LCC). Related information for

the studied real networks and their LCC is shown in Table 1, where

the networks are listed in an increasing order of the number of

nodes. The smallest network includes about 2 × 103 vertices, while

the largest network contains approximately 6 × 104 vertices.

Table 1 shows that for the considered realistic scale-free net-

works with power exponent 2 < γ ⩽ 3, their Kemeny constant

is very small. Moreover, the ratio of the Kemeny constant to the

number of nodes is constant, which is a little larger than 1 for most
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Figure 1: (a) Initial construction of the Apollonian network.
(b) Iterative construction method of the Apollonian net-
work. One can obtain the next iteration the Apollonian net-
work by performing the operation on the right-hand side of
the arrow for each active triangle.

of the networks. Therefore, for the studied scale-free realistic net-

works, their Kemeny constant grows linearly with the number of

nodes, a phenomenon similar to that in the complete graphs.

In fact, the linear growth of the Kemeny constant found in real-

world scale-free networks is universal. In the following three sec-

tions, we will study the Kemeny constant in three model scale-free

networks, the Kemeny constant of which also scales linearly with

the number of nodes.

4 THE KEMENY CONSTANT IN THE
APOLLONIAN NETWORK

In this section, we study the Kemeny constant for random walks on

the Apollonian network with scale-free small-world properties [16].

4.1 Network Construction and Properties
The Apollonian network was derived from the Apollonian packing

and was proposed independently in [3] and in [16], with different

initial constructions but similar structural and dynamical properties.

Here we focus on the version in [16], which can be defined in an

iterative manner [56]. Let Aд = (Vд , Eд) denote Apollonian net-

work afterд generation evolution. Initially (д = 0),A0 = (V0, E0) is

a tetrahedron consisting of four faces or triangles, see Fig. 1 (a). Let

1, 2, 3, 4 denote the four vertices in A0. Then,V0 = {1, 2, 3, 4} and

E0 = {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)}. For three vertices a, b,
and c inAд , if they form a triangle ofAд that does not contain any

smaller triangles in it, we call it an active triangle of Aд and use a

tuple (a,b, c) to denote this active triangle. LetSд be the set of active
triangles of Aд . As we will show below, Sд includes 4 · 3д active

triangles. By definition, S0 = {(1, 2, 3), (1, 2, 4), (1, 3, 4), (2, 3, 4)}.

Let ∆i be the ith (i = 1, 2, . . . , 4 × 3д ) active triangle in Sд . Given

that we have Aд (д ≥ 0), Aд+1 can be constructed from Aд as

follows, see Fig. 1 (b). For every active triangle ∆i = (a,b, c) con-
taining three vertices a, b, c in Aд , we add a new vertex d inside it

and connect vertex d to the three vertices a, b, and c of the active
triangle. Figure 2 illustrates the network A2.

Let Nд = |Vд | and Eд = |Eд | denote, respectively, the numbers

of vertices and edges inAд . LetWд+1 = Vд+1\Vд denote the set of

new vertices introduced at iterationд+1, and letWд = |Wд | denote

the number of these newly introduced vertices. Let Sд = |Sд | be
the number of active triangles of Aд . Then, we have the following

1

2 3

5
9

10

11

1

2 4

6
12

13

14

1

3 4

7
15

16

17

2

3 4

8
18

19

20

Figure 2: The Apollonian network A2 and its vertex label-
ings.

relations:

Sд+1 =
⋃

∆i=(a,b,c)∈Sд

{(a,b,Nд + i), (a, c,Nд + i), (b, c,Nд + i)},

Vд+1 = Vд
⋃
{Nд + 1,Nд + 2, . . . ,Nд + Sд},

Eд+1 = Eд
⋃

∆i=(a,b,c)∈Sд

{(a,d = Nд + i), (b,d), (c,d)}.

By construction, each active triangle ofAд generates three active

triangles of Aд+1, which means Sд+1 = 3 · Sд = 12 · 3д . Since each

active triangle of Aд gives rise to one new vertex and three new

edges at the (д + 1)th iteration, we have Wд+1 = Sд = 4 · 3д ,

Nд+1 = Nд +Wд+1, and Eд+1 = Eд + 3Sд , which lead to

Nд = 2 · 3д + 2 (3)

and

Eд = 6 · 3д . (4)

Therefore, the average degree of all vertices inAд is 2Eд/Nд , which

tends to 6 for large networks, indicating that the Apollonian net-

work is sparse. Let di (д) be the degree of vertex i in Aд , which

was generated at iteration дi (дi ≥ 0). Then, di (д + 1) = 2di (д) =
3 × 2д−дi .

The Apollonian network displays the typical features of various

real-life networks [16]. It is scale-free with its degree distribution

P(k) having a power-law form P(k) ∼ k−(1+ln 3/ln 2). Moreover, it is

small-world with its diameter increasing as a logarithmic function

of the network size [56].

4.2 Recursive Relations for Matrices
After introducing the construction and properties of the Apollonian

network, we present a recursive formulation to calculate the eigen-

values of the network which subsequently can be used to calculate

the Kemeny constant.
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Let Aд and Dд denote, respectively, the adjacency matrix and

diagonal degree matrix ofAд . The elementAд(i, j) at row i and col-
umn j ofAд is defined as:Aд(i, j) = 1 if vertices i and j are adjacent
in Aд , Aд(i, j) = 0 otherwise. Then, the transition matrix of Aд ,

denoted byTд , is defined byTд = (Dд)
−1Aд , the ijth entry of which

is Tд(i, j) = Aд(i, j)/di (д). The normalized Laplacian matrix of Aд ,

denoted by Lд , is Lд = I − (Dд)
1

2Tд(Dд)
− 1

2 . We next determine the

relations between the three matrices Aд , Dд , and Tд .
For the Apollonian networkAд+1, let α denote the set of old ver-

tices already existing at generation д, and β the set of new vertices

belonging toWд+1. Then, Aд+1 can be written in the following

block form

Aд+1 =
©«
Aα,αд+1 A

α,β
д+1

A
β,α
д+1 A

β,β
д+1

ª®¬ = ©«
Aд A

α,β
д+1

A
β,α
д+1 0

ª®¬ ,
whereAα,αд+1 = Aд ,A

β,β
д+1 is the zero matrix with orderWд+1 ×Wд+1,

and A
α,β
д+1 = (A

β,α
д+1)

⊤
. The diagonal matrix Dд obeys relation

Dд+1 =

(
Dα,α
д+1 0

0 D
β,β
д+1

)
=

(
2Dд 0

0 3I

)
,

which is based on the fact that during the network evolution from

iteration д to iteration д + 1, the degree of vertices in α doubles,

and the degree of all vertices in β is 3. And the transition matrixTд
evolves as

Tд+1 = D−1д+1Aд+1 =
©«

1

2
Tд

1

2
D−1д A

α,β
д+1

1

3
A
β,α
д+1 0

ª®®®¬ .
In this way, we have obtained recursive relations for related matri-

ces.

4.3 Eigenvalues of Related Matrices
In order to determine all eigenvalues of the transition matrix Tд ,
we need some lemmas.

Lemma 4.1. For the Apollonian network Aд+1 after д + 1 (д ≥ 0)

iterations,

A
α,β
д+1A

β,α
д+1 = Dд + 2Aд . (5)

Lemma 4.2. Suppose M is an N × N matrix with eigenvalues

λ1, λ2, · · · , λN , and f1(x) and f2(x) are two polynomials in x . Then

det(f1(x)I − f2(x)M) =
N∏
i=1
(f1(x) − f2(x)λi ) . (6)

Let Pд(x) = det(xI − Tд) denote the characteristic polynomial

of matrix Tд . The following lemma provides an expression for the

characteristic polynomial Pд(x).

Lemma 4.3. For д ≥ 0,

Pд+1(x) = xWд+1−Nд
det

((
x2 −

1

6

)
I −

(
1

2

x +
1

3

)
Tд

)
.

Let λ
(д)
1

, λ
(д)
2

, · · · , λ
(д)
Nд

be the Nд eigenvalues of transition matrix

Tд , and let Λ(Tд) be the set of these Nд eigenvalues, that is, Λ(Tд) =

{
λ
(д)
1
, λ
(д)
2
, · · · , λ

(д)
Nд

}
. By definition, λ

(д)
i (i = 1, 2, . . . ,Nд ) are the

roots of Pд(x) = det(xI −Tд) = 0. Define two functions д1(x) and
д2(x):

д1(x) =
x

4

+
1

4

√
x2 +

16

3

x +
8

3

(7)

and

д2(x) =
x

4

−
1

4

√
x2 +

16

3

x +
8

3

. (8)

The following theorem shows that all the eigenvalues of matrix

Tд+1 can be obtained from those of Tд .

Theorem 4.4. The eigenvalue set Λ(Tд+1) of matrix Tд+1 con-

sists of two subsets Λ1(Tд+1) and Λ2(Tд+1), satisfying Λ(Tд+1) =
Λ1(Tд+1) ∪ Λ2(Tд+1), where Λ1(Tд+1) includes only eigenvalue 0

with multiplicity Nд+1 − 2Nд = 2 · 3д − 2, Λ2(Tд+1) contains the

remaining 2Nд = 2(2·3д+2) eigenvalues λ
(д+1)
i,1 and λ

(д+1)
i,2 generated

by λ
(д)
i (i = 1, 2, . . . ,Nд) in the following way

λ
(д+1)
i,1 = д1(λ

(д)
i ) =

λ
(д)
i
4

+
1

4

√
(λ
(д)
i )

2 +
16

3

λ
(д)
i +

8

3

, (9)

λ
(д+1)
i,2 = д2(λ

(д)
i ) =

λ
(д)
i
4

−
1

4

√
(λ
(д)
i )

2 +
16

3

λ
(д)
i +

8

3

. (10)

Proof. According to Lemmas 4.2 and 4.3,

Pд+1(x) = xWд+1−Nд
det

((
x2 −

1

6

)
I −

(
1

2

x +
1

3

)
Tд

)
= xWд+1−Nд

Nд∏
i=1

((
x2 −

1

6

)
−

(
1

2

x +
1

3

)
λ
(д)
i

)
. (11)

By definition, the Nд+1 eigenvalues of Tд+1 are the Nд+1 roots

of Pд+1(x) = 0. (11) indicates that 0 is an eigenvalue of Tд+1 with
multiplicityWд+1−Nд = Nд+1−2Nд = 2 ·3д−2. These eigenvalues

0 form the subset Λ1(Tд+1).
Except the 2 · 3д − 2 eigenvalues 0, the other 2Nд eigenvalues of

matrix Tд+1 can be determined by equation

Nд∏
i=1

((
x2 −

1

6

)
−

(
1

2

x +
1

3

)
λ
(д)
i

)
= 0, (12)

which is equivalent to

ξi (x) ≜ x2 −
λ
(д)
i
2

x −
©«
λ
(д)
i
3

+
1

6

ª®¬ = 0, (13)

i = 1, 2, . . . ,Nд . From (13), we obtain that for an arbitrary element

λ
(д)
i in set Λ(Tд), both solutions of ξi (x) = 0, denoted by λ

(д+1)
i,1 and

λ
(д+1)
i,2 , are in Λ2(Tд+1), which are given by (9) and (10), respectively.

Thus, each eigenvalue λ
(д)
i generates two eigenvalues of matrix

Λ(Tд+1), and all the Nд eigenvalues of matrix Λ(Tд) give rise to

2Nд = 2(2 · 3д + 2) eigenvalues, which constitute subset Λ2(Tд+1).
□

Theorem 4.4 provides a recursive expression for eigenvalues

of the transition matrix for the Apollonian network Aд , as well

as their multiplicity. Actually, using a similar approach, we can

also determine the eigenvalues corresponding to the normalized

Laplacian matrix Lд .
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Let σ
(д)
1

, σ
(д)
2

, · · · , σ
(д)
Nд

be the Nд eigenvalues of the normalized

Laplacian matrix Lд , and let Ω(Lд) be the set of these Nд eigen-

values, that is, Ω(Lд) =
{
σ
(д)
1
,σ
(д)
2
, · · · ,σ

(д)
Nд

}
. Then, the relation

σ
(д)
i = 1 − λ

(д)
i holds for all i = 1, 2, . . . ,Nд .

Corollary 4.5. The eigenvalue set Ω(Lд+1) of matrix Lд+1 con-
sists of two subsets Ω1(Lд+1) and Ω2(Lд+1), satisfying Ω(Lд+1) =
Ω1(Lд+1) ∪ Ω2(Lд+1), where Ω1(Lд+1) includes only eigenvalue 1

with multiplicity Nд+1 − 2Nд = 2 · 3д − 2, Ω2(Lд+1) contains the re-

maining 2Nд = 2(2 · 3д + 2) eigenvalues σ
(д+1)
i,1 and σ

(д+1)
i,2 generated

by σ
(д)
i (i = 1, 2, . . . ,Nд) in the following way

σ
(д+1)
i,1 =

3

4

+
σ
(д)
i
4

−
1

4

√(
σ
(д)
i

)
2

−
22

3

σ
(д)
i + 9, (14)

σ
(д+1)
i,2 =

3

4

+
σ
(д)
i
4

+
1

4

√(
σ
(д)
i

)
2

−
22

3

σ
(д)
i + 9 . (15)

The proof is similar to that of Theorem 4.4, we here omit the

proof detail.

4.4 The Kemeny Constant
We are now in position to use the obtained eigenvalues to determine

the Kemeny constant for the Apollonian network Aд , denoted by

Kд .

Theorem 4.6. For д ≥ 0, the closed-form expression for the Ke-

meny constant Kд of the Apollonian network Aд is

Kд = 1 +
1

12

(
32 × 3д − 16

(
9

5

)д
+ 11

)
. (16)

For д→∞,

Kд ∼
4

3

Nд . (17)

Proof. According to (2),

Kд = 1 +

Nд∑
i=2

1

σ
(д)
i

. (18)

Let Rд denote the sum of reciprocals of nonzero eigenvalues for

matrix Lд . That is, Rд =
∑Nд
i=2

1

σ (д)i

, which can be evaluated as

Rд =
∑

σ (д)i ∈Ω1(Lд )

1

σ
(д)
i

+
∑

σ (д)i ∈Ω2(Lд )\{0}

1

σ
(д)
i

. (19)

By Corollary 4.5,

Rд = Nд − 2Nд−1 +
1

σ
(д)
1,2

+

Nд−1∑
i=2

©« 1

σ
(д)
i,1

+
1

σ
(д)
i,2

ª®¬ . (20)

Considering σ
(д−1)
1

= 0, (14) and (15), we have σ
(д)
1,1 = 0, σ

(д)
1,2 = 3/2,

and

1

σ
(д)
i,1

+
1

σ
(д)
i,2

=
3

5

+
9

5σ
(д−1)
i

(21)

for all i = 2, 3, . . . ,Nд−1. Then,

Rд = Nд − 2Nд−1 +
2

3

+
3

5

(Nд−1 − 1) +
9

5

Nд−1∑
i=2

1

σ
(д−1)
i

=
9

5

Rд−1 +
16

5

3
д−1 −

11

15

. (22)

Using the initial condition R0 = 9/4, (22) is solved to obtain

Rд =
1

12

(
32 × 3д − 16

(
9

5

)д
+ 11

)
, (23)

inserting which into (18) giving (16).

We now express Kд as a function of the network size Nд . From

Nд = 2 × 3д + 2, we have 3д = (Nд − 2)/2 and д = (ln(Nд − 2) −

ln 2)/ln 3. Hence, the Kemeny constant Kд in (16) can be expressed

in terms of network size Nд as

Kд = 1 +
1

12

(
16Nд − 16

(
Nд

2

− 1

)
2−ln 5/ln 3

− 21

)
. (24)

When д→∞, one obtains (17). □
Thus, for large Nд , the Kemeny constant for the sparse Apollo-

nian network behaves linearly with Nд , which is similar to that

for dense complete graphs. Then, the Apollonian network is an

optimal scale-free small-world network in the sense that it has the

least scaling of Kemeny constant.

5 THE KEMENY CONSTANT IN EXTENDED
PSEUDOFRACTAL NETWORKS

In this section, we study the Kemeny Constant in extended pseud-

ofractal networks with the scale-free small-world features [57]. We

will show that their Kemeny Constant also increases linearly with

the network size.

The extended pseudofractal networks are an extension of pseud-

ofractal web [15], which are also built in an iterative way. Let

Fд = (Vд , Eд) denote the network family after д (д ≥ 0) iterations.

For д = 0, F0 is a triangle. For д ≥ 1, Fд is obtained from Fд−1 by

performing the operation in Fig. 3 (a): every edge in Eд−1 generates

m (a positive integer) additional vertices, which are attached to

both end vertices of this edge. Figure 3 (b) illustrates the network

F2 form = 2.

In what follows, we use the same notations as those for the Apol-

lonian network studied in the previous section. By construction,

we have the following relations: Eд+1 = (2m + 1)Eд ,Wд+1 =mEд ,
and Nд+1 = Nд +Wд+1. Thus, for all д ≥ 0, Eд = 3(2m + 1)д ,

Wд+1 = 3m(2m + 1)д , and Nд = 3((2m + 1)д + 1)/2. In addi-

tion, for a vertex i generated at iteration дi , its degree evolves

as di (д + 1) = (m + 1)di (д) = 2(m + 1)д−дi .
The extended pseudofractal networks are sparse with an average

degree 4. They also display the remarkable scale-free and small-

world features observed in many real-life networks [57]. Their

degree distribution P(k) follows a power-law behavior P(k) ∼ k−γm

with γm = 1 + ln(2m + 1)/ln(m + 1). And their diameter grows

logarithmically with the network size [57].

In a similar way to that of Appolonian network, the explicit

formula and the leading behavior for the Kemeny constant Kд of

the extended pseudofractal networks Fд are summarized in the

following theorem.
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m

1

2

⇒

(a) (b)

Figure 3: (a) Construction approach for the extended pseud-
ofractal networks. The next iteration is obtained by per-
forming the operation on the bottom of the arrow for each
existing edge. (b) Illustration for an extended pseudofractal
network F2 corresponding to a particular casem = 2.

Theorem 5.1. For д ≥ 0, the exact expression for the Kemeny

constant Kд of the extended pseudofractal networks Fд is

Kд =1 +
1

30m(2m + 1)

( (
8 + 25m + 18m2

)
+ (135m + 90m2)(1 + 2m)д

− (28m2 + 120m + 8)

(
2 + 4m

2 +m

)д )
. (25)

When д→∞,

Kд ∼
2m + 3

2m + 1
Nд . (26)

Theorem 5.1 shows that the Kemeny constant of the extended

pseudofractal networks also scales linearly with the network size.

6 THE KEMENY CONSTANT IN THE
BARABÁSI-ALBERT NETWORK

In the preceding sections, we have studied the Kemeny constant

in some realistic scale-free networks and two deterministic scale-

free small-world networks, and presented that the leading scaling

of their Kemeny constant grows linearly with the network size.

To further investigate the universality of this linear scaling about

Kemeny constant for random walks in scale-free networks, we

also study the Kemeny constant in the popular Barabási-Albert

network [5], and observe a linear behavior for the Kemeny constant.

As a classic scale-free network model, the Barabási-Albert net-

work [5] is generated by applying the following algorithm. Initially,

we have a connected graph with a small numberm0 ≥ m vertices,

withm ≥ 1. At every time step, we generate a new vertex withm
links, and connect it tom different old nodes, with the probability

that the new vertex is linked to an old vertex i being proportional
to the degree of i . After performing the operations of growth and

preferential attachment a sufficient number of times, we obtain a

Barabási-Albert scale-free network with a power-law degree distri-

bution P(k) ∼ k−3 and average degree 2m.

We study the Kemeny constant for random walks on various

Barabási-Albert networks with different network size and average

degree. In Fig. 4, we present the numerical results for Kemeny
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Figure 4: Kemeny constant on the Barabási-Albert network.

constant on Barabási-Albert networks, which grows linearly with

the number of vertices. Thus, the linear scaling of Kemeny constant

appears to be universal for the Barabási-Albert networks.

7 STRUCTURAL REASONS FOR THE
OBSERVED MINIMAL SCALING OF
KEMENY CONSTANT

In the four preceding sections, we have investigated the Kemeny

constant in some real-world scale-free networks and three model

scale-free graphs. We showed that in all studied networks, their

Kemeny constant behaves linearly with N , the number of vertices.

The behavior is identical to that of complete graphs, the Kemeny

constant of which is the smallest among all graphs with the same

number of vertices. Therefore, all considered networks are almost

optimal in the sense that they have the minimal scaling for the

Kemeny constant. Because the Kemeny constant of a graph is fully

determined by the non-zero eigenvalues of its normalized Laplacian

matrix, which are in turn affected by the graph topology, we argue

that the observed linear scaling for Kemeny constant of the studied

networks lies in the scale-free and small-world structure, as well

as the presence of cycles of various length. The following heuristic

arguments are helpful to deepen our understanding.

In a scale-free graph, there exist large-degree vertices directly

connected to many other vertices. Moreover, for those real and

model scale-free graphs with different cycles of various lengths,

their average geodesic distance is very low, which scales at most

logarithmically with the vertex number N [37]. The aggregation

of these structural properties considerably influences various dy-

namics on graphs. For example, for random walks on scale-free

small-world loopy graphs, the hitting time to a large-degree hub

vertex scales sublinearly with N [36]. In contrast, the hitting time

to a small vertex is higher, behaving linearly with N . By definition

in (2), the Kemeny constant K =
∑N
j=1 πj Fi j is a weighted average

of hitting times. Although putting more weight on the hitting time

to a hub vertex, K is a linear function of N , which is due to the fact

that hub vertices are much less, in comparison with the low-degree

vertices.
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As we claimed above, the linear scaling of the Kemeny constant

is the result of the synergy of scale-free, small-world, and loopy

properties. Since scale-free behavior and presence of cycles with

different lengths can often result in the small-world phenomenon,

below, we will illustrate that either cycles or scale-free behavior

alone cannot guarantee the linear scaling of the Kemeny constant.

First, according to [58], for a graph G with the minimal degree

dmin, the Kemeny constant K satisfies K ≥ Ω(G)dmin/N , where

Ω(G) is the Kirchhoff index [19] of G. When G is the Farey graphs

that have similar structural properties as those of the Watt-Strogatz

small-world model [45], K ≥ N lnN , since in this case, dmin = 2

and Ω(G) ∼ N 2
lnN [51]. The scaling N lnN of K for the Farey

graphs are much larger than the linear scaling for extended pseud-

ofractal networks. We notice that both Farey graphs and extended

pseudofractal networks are small-world and possess various cy-

cles at different scales. The main reason for the difference between

their Kemeny constant is the power-law property of the extended

pseudofractal networks, which does not exist in Farey graphs.

We continue to show that only scale-free small-world properties

cannot necessarily lead to K ∼ N . For this purpose, we consider Ke-

meny constant of the Koch networks [41, 48], for whichK ≥ N lnN
in spite of the fact that the Koch networks are simultaneously scale-

free and small-world. The reason that the Kemeny constant of the

Koch networks is greater than linear scaling is as follows: there exist

only triangles in Koch networks, lacking cycles of other lengths.

8 FAST ALGORITHM FOR COMPUTING
KEMENY CONSTANT

As we know, the Kemeny constant K can be expressed in terms of

the normalized Laplacian as K = 1+
∑N
k=2

1

σk
= 1+Tr

(
L†

)
, where

L† is the Moore-Penrose inverse of the normalized Laplacian matrix

and σ2,σ3, · · · ,σN are the nonzero eigenvalues of L. A straight-

forward way to calculate Kemeny constant K of a graph involves

computing either the eigenvalues or the pseudoinverse L† of the
normalized Laplacian matrix L, both of which have a complexity

of O(N 3) and are intractable to huge networks. In this section, we

introduce a randomized algorithm to compute an approximation

of K for a general graph in nearly linear time with respect to the

number of edges.

8.1 Approximation Algorithm and its
Theoretical Performance

Ourmethod is to approximate the trace of L† based on Hutchinson’s
Monte-Carlo method [23]. For this purpose, we generateM inde-

pendent vectors x1, x2, · · · , xM ∈ R
n
, with the entry of each vector

being 1 or −1 with identical probability. Then, for an n-dimensional

positive semi-definite matrix A, 1

M
∑M
i=1 x

⊤
i Axi can be used to es-

timate the trace Tr (A) of A. Since E
[
x⊤i Axi

]
= Tr (A), by the law

of large numbers,
1

M
∑M
i=1 x

⊤
i Axi should be close to Tr (A) when

M is large. The following lemma [4] provides the performance of

1

M
∑M
i=1 x

⊤
i Axi as an estimation of Tr (A).

Lemma 8.1. Let A be a positive semidefinite matrix with rank

rank(A). Let x1, . . . ,xM beM independent vectors, for each of which

their entries are 1 or −1 with the same probability. Let ϵ,δ be scalars

such that 0 < ϵ ≤ 1/2 and 0 < δ < 1. Then, for any M ≥

24ϵ−2 ln(2rank(A)/δ ), the following statement holds with probability

at least 1 − δ :

(1 − ϵ )Tr (A) ≤
1

M

M∑
i=1

x⊤i Axi ≤ (1 + ϵ )Tr (A) .

Using Lemma 8.1, the estimation of the Kemeny constant K can

be reduced to evaluating the quadratic forms of L†. However, if we

directly compute the quadratic forms, we must first evaluate L†,
the time cost for which is high. To avoid the inverse operation of a

matrix, we will utilize the nearly linear time solver for Laplacian

systems from [30], the performance of which is characterized in

the following lemma, where the notation Õ(·) hides poly(logN )
factors.

Lemma 8.2. The algorithm z = LaplSolve(L,y, ϵ) takes a Lapla-
cian matrix L of a graph G with N nodes and E edges, a vector

y ∈ RN and a scalar ϵ > 0 as input, and returns a vector z ∈ RN

such that with probability 1 − 1/poly(N ) the following statement

holds: z − L†y
L
≤ ϵ

L†y
L
,

where ∥x ∥L =
√
x⊤Lx . The algorithm runs in expected time Õ(E).

However, having only Lemmas 8.1 and 8.2, we still cannot eval-

uate the quadratic forms of L†. Fortunately, this can be solved by

using the connection between L† and L†. Let 1 be a column vector

of approximate dimensions, whose entries are all ones. By defini-

tion, we have L = D
1

2 LD
1

2 , using this relation we can establish

a connection between the Moore-Penrose inverse of L and L as

given in the following lemma [7].

Lemma 8.3. Given a connected undirected graph G = (V, E)

with N nodes and E edges, with Laplacian matrix L and normalized

Laplacian matrix L, let L† and L† be the Moore-Penrose inverse of L

and L, respectively. Then,

L† = (I −
1

2E
D

1

2 11⊤D
1

2 )D
1

2L†D
1

2 (I −
1

2E
D

1

2 11⊤D
1

2 ). (27)

Algorithm 1: ApproxKemeny(G, ϵ)
Input :A graph G with N nodes and E edges; a real number

0 ≤ ϵ ≤ 1/2

Output : the approximation of Kemeny constant K̃
1 M =

⌈
48ϵ−2 ln(2N )

⌉
2 for i = 1 to M do
3 Generate a vector xi with each entry being randomly ±1

4 yi ← D
1

2 (I − 1

2E D
1

2 11⊤D
1

2 )xi
5 zi ← LaplSolve(L, yi , ϵ

3

√
2

N −2.5)

6 Compute ti
def

= ∥Bzi ∥2

7 Compute K̃ = 1

M
∑M
i=1 ti

8 return K̃

Using Lemmas 8.1, 8.2, and 8.3, we propose an approximation al-

gorithmApproxKemeny(G, ϵ) for computing the Kemeny constant

of an arbitrary graph G, as depicted in Algorithm 1, which has a

good approximation guarantee. Before giving the approximation

factor of our algorithm, we provide the following lemma.
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Lemma 8.4. Let G be a connected graph with N nodes, and let L

be its Laplacian matrix. Let y be a vector in RN , and let ϵ be a real
number obeying 0 < ϵ ≤ 1/2. Suppose z is a vector such thatz − L†y

L
≤ δ

L†y
L
, (28)

where

δ ≤
ϵ

3

√
2

N−2.5. (29)

Then, we have

(1 − ϵ)2y⊤L†y ≤ ∥Bz∥2 ≤ (1 + ϵ)2y⊤L†y. (30)

The following theorem gives the approximation guarantee of

Algorithm 1.

Theorem 8.5. Given a connected undirected graph G = (V, E)

with N nodes, E edges, and scalar 0 < ϵ ≤ 1/2, the algorithm

ApproxKemeny(G, ϵ) returns K̃ as an approximation of the Kemeny

constant. With high probability, the following statement holds :

(1 − ϵ)3K ≤ K̃ ≤ (1 + ϵ)3K . (31)

Proof. SinceM =
⌈
48ϵ−2 ln(2N )

⌉
≥ 48ϵ−2 ln(2N ), by Lemma 8.1,

we have

(1 − ϵ)Tr
(
L†

)
≤

1

M

M∑
i=1

x⊤i L
†xi ≤ (1 + ϵ)Tr

(
L†

)
. (32)

In addition, by Lemma 8.4,

(1 − ϵ)2x⊤i L
†xi ≤ ∥Bzi ∥

2 ≤ (1 + ϵ)2x⊤i L
†xi (33)

holds with probability 1 − 1

N . Combining (32) and the sum of (33)

over i , we obtain

(1 − ϵ)3Tr
(
L†

)
≤

1

M

M∑
i=1
∥Bzi ∥

2 ≤ (1 + ϵ)3Tr
(
L†

)
,

which implies (31). □
In addition to the high accuracy, Algorithm 1 is also efficient, as

summarized in the following theorem.

Theorem 8.6. The time cost of Algorithm 1 is Õ(Eϵ−2). The space
cost of Algorithm 1 is O(E).

Proof. We first prove the time complexity of Algorithm 1. Line

3 takes O(N ) time. For Line 4, to compute yi fast, we can first

evaluate 1⊤D
1

2 xi , which takes O(N ) time, since D is a diagonal

matrix. Then, we compute D
1

2 xi and D11⊤D
1

2 xi and their differ-

ence, which also takes O(N ) time. So Line 4 takes O(N ) time. Line

5 takes Õ(E) time. And using sparse matrix multiplication, line 6

takes O(E) time, since B has 2E non-zero entries. So lines 2-6 take

Õ(M × E) = Õ(Eϵ−2). Line 7 takes O(M) = Õ(ϵ−2). Therefore, the
overall time cost is Õ(Eϵ−2).

We continue to prove the space cost. We need O(E) to store the

original graph G. It takesO(N ) to store matrix D andO(E) to store

matrix B. Lines 3-5 take O(N ) space to store vectors xi , yi and zi ,

respectively. Line 6 takes at most O(M) = Õ(ϵ−2) space. Therefore,
the overall space cost isO(E), with the smaller terms being omitted.

This completes the proof of the space complexity. □

8.2 Experimental Results
To demonstrate the performance of Algorithm 1, we use it to com-

pute the Kemeny constant for some real and model networks. We

perform all experiments on a machine with 4-core 4.2GHz Intel i7-

7700K CPU and with 32GB of RAM. The approximation algorithm

was implemented in Julia v0.6.0, where the LaplSolve is from [30].

8.2.1 Results for Real Networks. We first demonstrate the effi-

ciency and scalability of Algorithm 1 for approximating the Ke-

meny constant of some real networks, by comparing with the exact

algorithm given in (2) through directly computing eigenvalues of

the normalized Laplacian matrix. Related information about the

studied real networks and their LCC is shown in Tables 1 and 2.

Table 3 reports the computational time of Algorithm 1 and the exact

algorithm. From Table 3, we observe that for all chosen parameter

ϵ , the running time for Algorithm 1 is much less than that for the

exact algorithm, particularly for those relatively large tested net-

works. Note that for the large networks in Table 2, due to the limits

of memory and time we cannot run the exact algorithm on the ma-

chine. In contrast, we can obtain the approximation of the Kemeny

constant for those networks by using Algorithm 1, indicating the

efficiency and scalability of our proposed algorithm.

We then demonstrate the accuracy of Algorithm 1 for approx-

imating the Kemeny constant of real networks. To this end, we

Table 2: Statistics of partial datasets used in our experiments.
For a network with N vertices and E edges, we denote the
number of vertices and edges in its largest connected com-
ponent by N ′ and E ′, respectively.

Network N E N ′ E′

Livemocha 104,103 2,193,083 104,103 2,193,083

WordNet 146,005 656,999 145,145 656,230

Gowalla 196,591 950,327 196,591 950,327

com-DBLP 317,080 1,049,866 317,080 1,049,866

Amazon 334,863 925,872 334,863 925,872

Pennsylvania 1,088,092 1,541,898 1,087,562 1,541,514

roadNet-TX 1,379,917 1,921,660 1,351,137 1,879,201

Table 3: The running time (seconds, s) of Algorithm 1 and
the exact algorithm (Exact) with various ϵ on real networks.

Network Exact

Algorithm 1 (s ) with various ϵ

(s ) 0.3 0.25 0.2 0.15 0.1 0.05
Hamsterster friendships 0.103 0.211 0.231 0.354 0.636 1.402 5.268

Protein 0.074 1.311 0.086 0.129 0.225 0.493 1.919

Hamster full 0.124 0.271 0.311 0.481 0.867 1.735 7.233

Human protein (Vidal) 0.311 0.152 0.223 0.318 0.524 1.233 4.728

Route views 2.874 0.277 0.370 0.574 1.009 2.198 8.639

arXiv astro-ph 78.90 6.287 8.128 11.16 20.08 51.03 191.5

CAIDA 252.8 1.999 2.429 3.973 7.450 16.40 68.01

Internet topology 564.8 4.245 4.438 7.233 11.75 28.30 104.5

Brightkite 2729 11.07 13.70 21.08 37.72 83.10 296.3

Livemocha – 86.63 125.0 183.4 313.6 748.8 2742

WordNet – 37.81 54.19 83.16 161.1 325.3 1198

Gowalla – 62.81 80.39 140.2 249.1 495.8 2163

com-DBLP – 111.4 163.1 228.2 464.9 983.8 3839

Amazon – 153.7 221.3 361.2 652.4 1400 5667

Pennsylvania – 581.2 810.8 1355 2363 5178 20550

roadNet-TX – 850.4 1215 1852 3268 7811 29118
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compare the approximation results K̃ obtained by Algorithm 1 with

the exact results K obtaind by (2). Table 4 reports the relative error

ρ = (K − K̃)/K of Algorithm 1. One can see that for all ϵ and all

networks, the actual relative errors are significantly small. Thus, ex-

cept for the efficiency, Algorithm 1 also gives good approximation

K̃ for the Kemeny constant K of real networks.

Table 4: Relative error ρ of Algorithm 1 (×10−4).

Network
Relative error for various ϵ

0.3 0.2 0.1 0.05

Hamsterster friendships 26.0 14.7 5.25 1.03
Protein 26.9 18.6 54.0 4.90

Hamster full 36.2 17.4 3.35 7.82
Human protein (Vidal) 10.2 15.7 15.5 0.68

Route views 8.23 9.73 1.32 0.77
arXiv astro-ph 8.49 18.7 0.45 0.98

CAIDA 4.34 0.77 1.78 0.91
Internet topology 0.95 1.43 1.31 0.48

Brightkite 3.66 2.80 0.48 0.38

8.2.2 Results for Model Networks. We continue to evaluate the

performance of Algorithm 1 by using it to compute the Kemeny

constant for model networks, including the Apollonian network

and extended pseudofractal networks withm = 1 andm = 2. The

numerical results are reported in Table 5. For the three considered

networks, the numbers of nodes are more than one million, with the

number of nodes in the third network being almost three million.

For each of the three networks, the computation time is lower

than 46 minutes, with the relative error less than 0.001, which

indicates that the approximation algorithm works effectively for

all considered networks. This again demonstrates the advantage of

our algorithm for large-scale networks.

9 CONCLUSIONS
As a fundamental quantity for random walks on networks, the Ke-

meny constant has found broad applications in different areas. For

example, it was proved to be a useful indicator measuring network

criticality, the efficiency of stochastic robotic surveillance strategies

in network environments, as well as the efficiency of navigation

on the Web, with the low Kemeny constant representing high ef-

ficiency. In these contexts, constructing or finding networks with

Table 5: Exact Kemeny constant K , their approximation K̃ ,
relative error ρ = (K − K̃)/K , and running time (seconds)
for K̃ on networks the Apollonian network A12, extended
pseudofractal network F13 withm = 1, and extended pseud-
ofractal network F9 withm = 2, denoted by F ′

9
.K is obtained

via (16) and (25), while K̃ is obtained through Algorithm 1
with ϵ = 0.1.

Network Vertices Edges K K̂ Error ρ Time

A12 1,062,884 3,188,646 1,415,634 1,415,576 0.000041 1736

F13 2,391,486 4,782,969 3,971,608 3,972,037 0.00011 1482

F′
9

2,929,689 5,859,375 4,100,948 4,096,858 0.00099 2754

optimal Kemeny constant is of both theoretical and practical inter-

est. It is known that among all networks with the same network size,

the complete graph is the unique optimal network having the least

Kemeny constant, the leading scaling of which is a linear function

of the network size, with a slope being exactly 1. However, complete

graphs cannot describe typical real-life networked systems, most

of which are sparse and simultaneously scale-free and small-world,

exhibiting power-law degree distribution and small distance.

In order to explore the behavior of the Kemeny constant on

networks with scale-free small-world structure, in this paper we

presented an extensive study of the Kemeny constant in some

real-life scale-free networks, two sparse deterministic scale-free

small-world networks, and the Barabási-Albert network. For all the

studied networks, their Kemeny constants are low, which display a

linear growth with the network size. Particularly, for each network,

the ratio of the Kemeny constant to the number of nodes is constant,

only a little greater than 1. Thus, minimal scaling for Kemeny

constant is similar to that of complete graphs can be achieved by

sparse scale-free networks with constant average vertex degree. In

addition, we developed a randomized algorithm that approximately

computes the Kemeny constant for any connected graph in nearly

linear time with respect to the number of edges. We experimentally

demonstrated the accuracy and efficiency of our algorithm. Our

work sheds light on the structure design of networks with small

Kemeny constant, as well as fast and accurate computation of the

Kemeny constant.
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