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ABSTRACT
For random walks on a graph, the mean hitting time Hj from a

vertex i chosen from the stationary distribution to the target vertex

j can be used as a measure of importance for vertex j, while the
Kemeny constant K is the mean hitting time from a vertex i to a

vertex j selected randomly according to the stationary distribution.

Both quantities have found a large variety of applications in dif-

ferent areas. However, their high computational complexity limits

their applications, especially for large networks with millions of

vertices. In this paper, we first establish a connection between the

two quantities, representing K in terms of Hj for all vertices. We

then express both quantities in terms of quadratic forms of the

pseudoinverse for graph Laplacian, based on which we develop

an efficient algorithm that provides an approximation of Hj for all

vertices andK in nearly linear time with respect to the edge number,

with high probability. Extensive experiment results on real-life and

model networks validate both the efficiency and accuracy of the

proposed algorithm.
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1 INTRODUCTION
As a powerful tool and method, random walks have found broad

applications in various aspects. Frequently cited examples include

image segmentation [13], random algorithm design [33], collab-

orative recommendation [11], community detection [21], among

others. A fundamental quantity related to random walks is hitting

time [27], also called first-passage time [9]. For a random walk on a

graph, the hitting time Hi j from a vertex i to another vertex j is the
expected time for the walker starting from i to visit j for the first
time. Hitting time is related to many problems and has been success-

fully applied to diverse areas, such as Hanoi problem with random

move [39], query suggestion [29], and clustering algorithm [6].

Except for the intrinsic interest of hitting time itself and its direct

applications, many other relevant quantities related to random

walks are encoded in or expressed in terms of this crucial quantity,

for example, absorbing random-walk centrality [28] (or Markov

centrality [38]) and Kemeny constant [15], both of which are a

partial average of hitting times. As the name implies, the absorbing

random-walk centrality is a measure for the importance of vertices

on a graph. For a vertex j , its absorbing random-walk centrality Hj
is defined by Hj =

∑
i ρ(i)Hi j , where ρ(·) is the starting probability

distribution over all vertices. Different from the shortest-path based

centrality measures, random-walk based centrality metrics include

the contributions from essentially all paths [31], and thus have a

better discriminating power.

For random walks on a graph with n vertices, the Kemeny con-

stant K is defined as the expected time for the walker starting from

one vertex to second vertex selected randomly from the graph ac-

cording to the stationary distribution π = (π1,π2, · · · ,πn )
⊤
of the

random walk, that is, K =
∑
j πjHi j . The Kemeny constant has

also found a wealth of applications in different fields [15]. It can

be utilized to gauge the efficiency of user navigation through the

World Wide Web (WWW) [22]. Moreover, the Kemeny constant is

related to the mixing rate of an irreducible Markov chain [23], by

regarding it as the expected time to mixing of theMarkov chain [14].

Recently, the Kemeny constant has been applied to measure the

efficiency of robotic surveillance in network environments [32]

and to characterize the noise robustness of a class of protocols for

formation control [16].

Despite the wide range of applications of the absorbing random-

walk centrality and the Kemeny constant, it is a computational

challenge to obtain their exact values. By definition, both the ab-

sorbing random-walk centrality and the Kemeny constant are a

partial average of some hitting times. However, the exact value

of hitting time between any pair of vertices in a graph involves

all eigenvalues and eigenvectors of (normalized) Laplacian matrix
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associated with the graph [25, 27], the computation complexity of

which is the cube of the vertex number. Thus, for large realistic net-

works with millions of vertices, we cannot obtain their absorbing

random-walk centrality and the Kemeny constant by resorting this

straightforward method for computing hitting time. It is then of

theoretical and practical interest to seek for alternative approximate

approaches that scale to large networks.

In this paper, we propose a nearly linear time algorithm to ad-

dress the computation issue for absorbing random-walk centrality

Hj and Kemeny constantK in large networks. We focus on a special

absorbing random-walk centrality Hj =
∑
i ρ(i)Hi j , with the start-

ing probability distribution ρ(·) being the stationary distribution

π = (π1,π2, · · · ,πn )
⊤
of the randomwalk. In other words, we study

Hj =
∑
i πiHi j , which has received considerable attention [4, 5, 36].

We first expressK in terms ofHj for all vertices, and further express

Hj and K in terms of quadratic forms of pseudoinverse of the Lapla-

cian matrix. We then propose a fast algorithm to compute approxi-

mate Hj for all vertices and K for the whole graph in nearly linear

time of the number of edges, based on the Johnson-Lindenstrauss

lemma [1] and the Laplacian solver [8, 18, 20, 26, 34, 35]. Finally,

we experimentally demonstrate that our algorithm is accurate and

is significantly faster than the direct exact computation of related

quantities according to their definitions.

2 PRELIMINARY
In this section, we give a brief introduction to some basic concepts

about graphs, Laplacian matrix, resistance distance, random walks,

hitting times and some quantities derived from hitting times.

2.1 Graph and Laplacian Matrix
Let G = (V ,E,w) denote a connected undirected weighted graph

or network, whereV is the set of vertices, E is the set of edges, and

w : E → R+ is the positive edge weight function, withwe being the

weight for edge e . Then, there are total n = |V | vertices andm = |E |
edges in graph G. We use u ∼ v to indicate that two vertices u
and v are connected by an edge. Let wmax and wmin denote the

maximum edge weight and minimum edge weight, respectively.

Namely,wmax = maxe ∈E we andwmin = mine ∈E we .

Mathematically, the topological and weighted properties of a

graph G are encoded in its generalized adjacency matrix A with

the entry ai j denoting the adjacency relation between vertices i
and j. If vertices i and j are linked to each other by an edge e ,
then ai j = aji = we > 0. Otherwise, ai j = aji = 0 indicating

that vertices i and j are not adjacent. In a weighted graph G, the

strength si of a vertex i is defined by si =
∑n
j=1

ai j [2]. The diagonal

strength matrix of graph G is defined to be S = diag(s1, s2, . . . , sn ),
and the Laplacian matrix of G is L = S − A.

Let B ∈ R |E |× |V |
be the incidence matrix of G. For each edge e

with two end vertices i and j , a direction is assigned arbitrarily. Let

b⊤e be the row of matrix B associated with edge e . Then the element

beu at row corresponding to edge e and column corresponding

to vertex u is defined as follows: beu = 1 if vertex u is the tail of

edge e , beu = −1 if vertex u is the head of edge e , and beu = 0

otherwise. Let eu be the u-th canonical basis of the space R |V |
,

then for an edge e connecting two vertices i and j, be can also be

recast as be = ei − ej . Let W ∈ R |E |× |E | be a diagonal matrix with

the diagonal entry (e, e) beingwe . Then the Laplacian matrix L of

graph G can be written as L = BTWB =
∑
e ∈E webeb⊤e .

The Laplacian matrix L is symmetric and positive semidefinite.

All its eigenvalues are non-negative, with a unique zero eigenvalue.

Let 0 = λ1 < λ2 ≤ λ3 ≤ · · · ≤ λn be the n eigenvalues of L, and let

ui , i = 1, 2, . . . ,n, be their corresponding mutually orthogonal unit

eigenvectors. Then, L has the following spectral decomposition:

L =
∑n
i=2

λiuiu
⊤
i . It is easy to verify that λn ≤ nwmax [24]. Since L

is not invertible, we use L† to denote its pseudoinverse, which can

be written as L† =
∑n
i=2

1

λi
uiu

⊤
i . Let J denote the matrix with all

entries being ones. Then the pseudoinverse L† can also be recast as(
L + 1

n J
)−1

− 1

n J [12]. Note that for a general symmetric matrix,

it shares the same null space as its Moore-Penrose generalized

inverse [3]. Since the null space of null of L is 1, it turns out that
L1 = L†1 = 0.

2.2 Electrical Network and Resistance Distance
For an arbitrary graph G = (V ,E,w), we can define its correspond-

ing electrical network
¯G = (V ,E, r ), which is obtained from G by

considering edges as resistors and considering vertices as junc-

tions between resistors [10]. The resistor of an associated edge e
is re = w

−1

e . For graph G, the resistance distance Ri j between two

vertices i and j is defined as the effective resistance between i and j
in the corresponding electrical network

¯G [17], which is equal to

the potential difference between i and j when a unit current enters

one vertex and leaves the other one.

For graph G, the resistance distance Ri j between two vertices i

and j can be expressed in terms of the elements of L† as [17]:

Ri j = L†ii + L
†
j j − 2L†i j . (1)

Define R as the n × n resistance matrix of graph G, whose entry at

row i and column j represents the resistance distance Ri j between
vertices i and j.

Lemma 2.1. [37] Let G = (V ,E,w) be a simple connected graph
with n vertices. Then the sum of weight times resistance distance over
all pairs of adjacent vertices in G satisfies∑

i∼j ∈E
wi jRi j = n − 1.

2.3 RandomWalk on a Graph
For a graph G, one can define a discrete-time random walk on it. At

any time step, the walker starting from its current location i moves

to vertex j with probability ai j/si . If G is finite and non-bipartite,

the random walk has a unique stationary distribution [25]

π = (π1,π2, · · · ,πn )
⊤ =

( s1

s
,
s2

s
, · · · ,

sn
s

)⊤
, (2)

where s is the sum of strengths over all vertices, namely s =∑n
i=1

si =
∑n
i=1

∑n
j=1

ai j .

A fundamental quantity for random walks is hitting time [9, 27].

The hitting timeHi j from vertex i to vertex j , is the expected number

of jumps for a walker starting from i to visit j for the first time. There

is an intimate relationship between hitting time and resistance

distance [37].
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Lemma 2.2. Let G be a connected weighted graph with resistance
matrix R. Let Hi j be the hitting time from vertex i to vertex j. Then,

Hi j =
1

2

n∑
z=1

sz (Ri j + Rjz − Riz ). (3)

A lot of interesting quantities can be derived from hitting times.

Here we only consider two quantities, the absorbing random-walk

centrality [28] and the Kemeny constant [15].

For a vertex j in graph G = (V ,E,w), its absorbing random-walk

centralityHj is defined asHj =
∑
i ρ(i)Hi j , where ρ(·) is the starting

probability distribution over all vertices in V . By definition, Hj is a

weighted average of hitting times to vertex j . The smaller the value

of Hj , the more important the vertex j. The random-walk based

centrality has an obvious advantage over those shortest-path based

centrality measures [31]. In this paper, we concentrate on a natural

choice of ρ(·) by selecting the starting vertex from the stationary

distribution π . In this case, Hj =
∑
i πiHi j , which has been much

studied [4, 5, 36]. In the following text, we call Hj =
∑
i πiHi j walk

centrality for short.

Another quantity we are concerned with is the Kemeny constant

K . For a graph G, its Kemeny constant K is defined as the expected

steps for a walker starting from vertex i to vertex j selected ran-

domly from the vertex setV , according to the stationary distribution

π . That is, K =
∑n
j=1

πjHi j . The Kemeny constant has been used

to measure the user navigation efficiency through the WWW [22]

and robotic surveillance efficiency in network environments [32].

It can also measure the mixing rate of random walks [23].

Most quantities for random walks on graph G are determined

by the eigenvalues and eigenvectors of the normalized Laplacian

matrix [7], S−
1

2 LS−
1

2 , of G, including the walk centrality and Ke-

meny constant. By definition, S−
1

2 LS−
1

2 is a real, symmetric, semi-

definitive matrix. Let 0 = σ1 < σ2 ≤ σ3 ≤ · · · ≤ σn be the n

eigenvalues of the normalized Laplacian matrix S−
1

2 LS−
1

2 . And

let ψ
1
, ψ

2
, ψ

3
, . . ., ψn be their corresponding mutually orthogo-

nal eigenvectors of unit length, where ψi = (ψi1,ψi2, . . . ,ψin )
⊤
.

Then [5, 27],

Hj =

n∑
i=1

πiHi j =
s

sj

n∑
k=2

1

σk
ψ 2

k j (4)

and

K =
n∑
j=1

πj Hi j =

n∑
k=2

1

σk
. (5)

Equations (4) and (5) provide exact computation for the walk

centrality and Kemeny constant, respectively. However, both for-

mulas are expressed in terms of the eigenvalues and eigenvectors

of the normalized Laplacian, the computation complexity for which

scale as O(n3). Thus, direct computation for Hj and K using spec-

tral method appears to be prohibitive for large networks, and is

infeasible to those realistic networks with millions of vertices.

3 NEW FORMULAS FOR MARKOV
CENTRALITY AND KEMENY CONSTANT

In this section, we first establish an explicit relation between the

walk centrality Hj and the Kemeny constant K . Then we express

both quantities in terms of quadratic forms of the pseudoinverse

L† of graph Laplacian L, based on which we put forward a random

algorithm approximately computing Hj and K .
Although both the walk centrality Hj and the Kemeny constant

K have attracted much attention from the scientific community, the

relation between them for a generic graph G is still lacking. Below

we show that the Kemeny constant K can be expressed in a linear

combination of walk centrality Hj for all vertices in G, as stated in

the following lemma.

Lemma 3.1. Let G = (V ,E,w) be a connected weighted graph.
Then, its Kemeny constant K and walk centrality Hj obey the follow-
ing relation:

K =
n∑
j=1

πjHj =

n∑
j=1

sj

s
Hj . (6)

Proof. From (5), the Kemeny constant K is independent of the

starting vertex i . Define Ki =
∑n
j=1

πj Hi j . Then Ki = Kj holds for

any pair of vertices i and j. Thus, we have

K = Ki =
n∑
i=1

πi
©­«
n∑
j=1

πj Hi j
ª®¬

=

n∑
j=1

πj

( n∑
i=1

πi Hi j

)
=

n∑
j=1

sj

s
Hj ,

which establishes the lemma. □
After obtaining the relation governing the Kemeny constant K

and walk centrality Hj , we continue to express them in terms of

quadratic forms of matrix L†.

Lemma 3.2. Let G = (V ,E,w) be a connected weighted graph
with Laplacian matrix L. Then, the walk centrality Hj and Kemeny
constant K can be represented in terms of quadratic forms of the
pseudoinverse L† of matrix L as:

Hj = s(ej − π )⊤L†(ej − π ) (7)

and

K =
n∑
j=1

sj (ej − π )⊤L†(ej − π ). (8)

Proof. We first prove (7). Inserting (3) and (1) into (4) leads to

Hj =
1

2

n∑
i=1

πi

n∑
z=1

sz (Ri j + Rjz − Riz )

=
1

s

n∑
i=1

si

n∑
z=1

sz
(
L†j j − L†i j − L†jz + L

†
iz

) (9)

The four terms in the brackets of (9) can be sequentially calcu-

lated as follows:

n∑
i=1

si

n∑
z=1

szL
†
j j = s

2e⊤j L
†ej , (10)

n∑
i=1

si

n∑
z=1

szL
†
i j =

n∑
i=1

si

n∑
z=1

szL
†
jz = s

2e⊤j L
†π , (11)
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and

n∑
i=1

si

n∑
z=1

szL
†
iz = s

2π⊤L†π . (12)

Plugging (10), (11), and (12) into (9), we obtain

Hj = s(e⊤j L
†ej − 2e⊤j L

†π + π⊤L†π )

= s(ej − π )⊤L†(ej − π ).
(13)

Substituting (13) into (6) gives (8). □

4 NEARLY LINEAR TIME APPROXIMATION
ALGORITHM

In the preceding section, we reduce the problem of computing

Hj and K to evaluating the quadratic forms (eu − π )⊤L†(eu − π ),

u = 1, 2, . . . ,n, of matrix L†. However, this involves computing the

pseudoinverse of L, the straightforward computation for which still

has a complexity of O(n3), making it infeasible to huge networks.

Here, we present an algorithm to compute an approximation of

Hu for all u ∈ V and K in nearly linear time with respect to the

number of edges, which has a strict theoretical guarantee with high

probability.

Let C(u) = (eu − π )⊤L†(eu − π ), which can be written in an

Euclidian norm as

C(u) = (eu − π )⊤L†LL†(eu − π )

= (eu − π )⊤L†B⊤WBL†(eu − π )

= (eu − π )⊤L†B⊤W
1

2 W
1

2 BL†(eu − π )

= ∥W
1

2 BL†(eu − π ) ∥2 .

(14)

This in fact equals the square of the distance between vectors

W
1

2 BL†eu and W
1

2 BL†π , which can be evaluated by the Johnson-

Lindenstraus Lemma [1].

Lemma 4.1. Given fixed vectors v1, v2, . . . , vn ∈ Rd and ϵ > 0,
letQk×d , k ≥ 24 logn/ϵ2, be a matrix with each entry equal to 1/

√
k

or −1/
√
k with the same probability 1/2. Then with probability at

least 1 − 1/n,

(1 − ϵ)∥vi − v j ∥2 ≤ ∥Qvi − Qv j ∥2 ≤ (1 + ϵ)∥vi − v j ∥2

for all pairs i, j ≤ n.

Lemma 4.1 indicates that, the pairwise distances ∥vi − v j ∥2

(i, j = 1, 2, . . . ,n) are almost preserved if we project the n vectors

vi (i = 1, 2, . . . ,n) into a lower-dimensional space, spanned by

O(logn) random vectors.

In order to compute C(u), we use Lemma 4.1 to reduce the

dimension. Let Q be a k × m random projection matrix. Then

∥QW
1

2 BL†(eu−π )∥ is a good approximation for ∥W
1

2 BL†(eu−π )∥.
Here we can use sparse matrix multiplication to compute QW

1

2 B.
However, computing Z = QW

1

2 BL† directly involves inverting

L + 1

n J . We avoid this by solving the system of equations Lzi = qi ,
i = 1, . . . ,k , where z⊤i and q⊤i are, respectively, the i-th row of Z

and QW
1

2 B. For the convenience of description, in the sequel we

use the notation Õ(·) to hide poly log factors. By using Laplacian

solvers [8, 18, 20, 26, 34, 35], z⊤i can be efficiently approximated.

We here use the solver from [8], the performance of which is char-

acterized in the following lemma.

Lemma 4.2. There is an algorithm x = LaplSolve(L, y,δ ) which
takes a Laplacian matrix L, a column vector y, and an error parameter
δ > 0, and returns a column vector x satisfying 1⊤x = 0 and

∥x − L†y∥L ≤ δ ∥L†y∥L,

where ∥y∥L =
√
y⊤Ly. The algorithm runs in expected time Õ (m log(1/δ )).

By Lemmas 4.1 and 4.2, one can approximate C(u) arbitrarily
well.

Lemma 4.3. Given an approximate factor ϵ ≤ 1/2 and a k × n
matrix Z that satisfies

(1 − ϵ)C(u) ≤ ∥Z(eu − π )∥2 ≤ (1 + ϵ)C(u),

for any vertex u ∈ V and

(1 − ϵ)∥W
1

2 BL†(eu − ev )∥2

≤∥Z(eu − ev )∥2

≤(1 + ϵ)∥W
1

2 BL†(eu − ev )∥2

for any pair of vertices u,v ∈ V . Let zi be the i-th row of Z and let z̃i
be an approximation of zi for all i ∈ {1, 2, ...,k}, satisfying

∥zi − z̃i ∥L ≤ δ ∥zi ∥L, (15)

where

δ ≤
ϵ

3

s − su
s

√
(1 − ϵ)wmin

(1 + ϵ)n4wmax

. (16)

Then for any vertex u belonging to V ,

(1 − ϵ)2C(u) ≤ ∥Z̃(eu − π )∥2 ≤ (1 + ϵ)2C(u), (17)

where Z̃ = [z̃1, z̃2, ..., z̃k ]⊤.

Proof. To prove (17), it is sufficient to show that for an arbitrary

vertex u, ��∥Z(eu − π ) ∥2 − ∥Z̃(eu − π ) ∥2

��
=

��∥Z(eu − π )∥ − ∥Z̃(eu − π ) ∥
��×��∥Z(eu − π ) ∥ + ∥Z̃(eu − π ) ∥
��

≤

(
2ϵ
3

+
ϵ 2

9

)
∥Z(eu − π ) ∥2 , (18)

which is obeyed if��∥Z(eu − π ) ∥ − ∥Z̃(eu − π ) ∥
�� ≤ ϵ

3

∥Z(eu − π ) ∥ . (19)

This can be understood from the following arguments. On the one

hand, if

��∥Z(eu − π ) ∥2 − ∥Z̃(eu − π ) ∥2

�� ≤ (
2ϵ
3
+ ϵ2

9

)
∥Z(eu − π ) ∥2

, then(
1 −

2ϵ

3

−
ϵ2

9

)
∥Z(eu − π )∥2

≤∥Z̃(eu − π )∥2

≤

(
1 +

2ϵ

3

+
ϵ2

9

)
∥Z(eu − π )∥2 ,

which, combining with ϵ ≤ 1/2 and the assumption that (1 −

ϵ)C(u) ≤ ∥Z(eu −π )∥2 ≤ (1+ϵ)C(u), leads to Eq. (17). On the other

hand, if Eq. (19) is true, we have ∥Z̃(eu −π )∥ ≤ (1+ ϵ
3
) ∥Z(eu − π )∥.

Thus, ��∥Z(eu − π )∥ + ∥Z̃(eu − π )∥
�� ≤ (2 +

ϵ

3

) ∥Z(eu − π )∥ ,

which results in Eq. (18).
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We now prove that (19) holds true. By applying triangle inequal-

ity and Cauchy-Schwarz inequality, we obtain��∥Z(eu − π ) ∥ − ∥Z̃(eu − π ) ∥
��

≤


(Z − Z̃)(eu − π )




=

1

s






 n∑
v=1

sv (Z − Z̃)(eu − ev )







≤

1

s

n∑
v=1

sv


(Z − Z̃)(eu − ev )




≤

1

s

√√ n∑
v=1

s2

v

n∑
v=1



(Z − Z̃)(eu − ev )


2

≤

√√ n∑
v=1



(Z − Z̃)(eu − ev )


2

,

where the last inequality is due to the fact that s =
∑n
v=1

sv ≥√∑n
v=1

s2

v .

Since we only consider connected graphs, there exists a simple

path Pv between u and any other vertex v . Applying the triangle
inequality along path Pv , the square of the last sum term in the

above equation can be evaluated as:

n∑
v=1



(Z − Z̃)(eu − ev )


2

≤

n∑
v=1

©­«
∑

a∼b∈Pv



(Z − Z̃)(ea − eb )


ª®¬

2

≤ n
n∑
v=1

∑
a∼b∈Pv



(Z − Z̃)(ea − eb )


2

≤ n2

∑
a∼b∈E



(Z − Z̃)(ea − eb )


2

= n2



(Z − Z̃)B⊤


2

F

= n2



B(Z − Z̃)⊤


2

F

≤
n2

wmin




W1/2B(Z − Z̃)⊤



2

F
,

where ∥M∥F denotes the Frobenius norm of matrix M, defined as

the square root of the trace for matrix M⊤M. The last term can be

bounded as

n2

wmin




W1/2B(Z − Z̃)⊤



2

F

=
n2

wmin

Tr

(
(Z − Z̃)B⊤WB(Z − Z̃)⊤

)
=

n2

wmin

Tr

(
(Z − Z̃)L(Z − Z̃)⊤

)
=

n2

wmin

k∑
i=1

(zi − z̃i )⊤L(zi − z̃i )

≤
n2δ 2

wmin

k∑
i=1

z⊤i Lzi

=
n2δ 2

wmin

Tr

(
ZLZ⊤

)
=
n2δ 2

wmin




W1/2BZ⊤



2

F
,

where the inequality follows from (15) and the last term can be

further evaluated by Lemma 2.1 as

n2δ2

wmin




W1/2BZ⊤



2

F

=
n2δ2

wmin

∑
a∼b ∈E

wa∼b ∥Z(ea − eb )∥
2

≤
δ2n2(1 + ϵ)

wmin

∑
a∼b ∈E

wa∼b ∥W
1

2 BL†(ea − eb )∥
2

=
δ2n2(1 + ϵ)

wmin

∑
a∼b ∈E

wa∼b (ea − eb )
⊤L†B⊤WBL†(ea − eb )

=
δ2n2(1 + ϵ)

wmin

∑
a∼b ∈E

wa∼b (ea − eb )
⊤L†LL†(ea − eb )

=
δ2n2(1 + ϵ)

wmin

∑
a∼b ∈E

wa∼b (ea − eb )
⊤L†(ea − eb )

=
δ2n2(1 + ϵ)

wmin

∑
a∼b ∈E

wa∼bRab

=
δ2n2(n − 1)(1 + ϵ)

wmin

.

In addition, ∥Z(eu − π )∥2
can also be bounded by

∥Z(eu − π )∥2 ≥ (1 − ϵ)C(u)

= (1 − ϵ)(eu − π )⊤L†(eu − π )

≥ (1 − ϵ)λ−1

n ∥eu − π ∥2

≥ (1 − ϵ)(nwmax)
−1

(s − su )
2

s2
.

In the above equation, the first inequation follows due to the fol-

lowing reason. Note that eu − π is orthogonal to vector 1, which
is an eigenvector of L† corresponding to the 0 eigenvalue. Hence,

(eu − π )⊤L†(eu − π ) ≥ λ−1

n ∥eu − π ∥2
always holds true.

Thus, we have��∥Z(eu − π )∥ −


Z̃(eu − π )



��
∥Z(eu − π )∥

≤ δ

(
n2(n − 1)(1 + ϵ)

wmin

)
1/2 (nwmax

1 − ϵ

)
1/2 s

s − su

≤
ϵ

3

,

where δ is given by (16). □
Lemma 4.3 leads to the following theorem.

Theorem 4.4. There is a Õ(m log c/ϵ2) time algorithm, which
inputs a scalar 0 < ϵ < 1 and a graph G = (V ,E,w) where c = wmax

wmin

,
and returns a (24 logn/ϵ2) × n matrix Z̃ such that with probability
at least 1 − 1/n,

(1 − ϵ)2C(u) ≤ ∥Z̃(eu − π )∥2 ≤ (1 + ϵ)2C(u)

for any vertex u ∈ V .

Based on Theorem 4.4, we present an algorithm ApproxHK

to approximately compute the walk centrality Hu for all vertices

u ∈ V and the Kemeny constant K , the pseudocode of which is

provided in Algorithm 1.
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Algorithm 1: ApproxHK(G, ϵ)

Input :G: a connected undirected graph.

ϵ : an approximation parameter

Output :H̃ = {u, H̃u |u ∈ V }: H̃u is an approximation of the

walk centrality Hu of vertex u; K̃ : approximation

of the Kemeny constant K
1 L = Laplacian of G, su = the strength of u for all u ∈ V ,

s =
∑
u ∈V su

2 Construct a matrix Qk×m , where k = ⌈24 logn/ϵ2⌉ and

each entry is ±1/
√
k with identical probability

3 for i = 1 to k do
4 q⊤i =the i-th row of Qk×mW1/2B
5 z̃i = LaplSolve(L,qi ,δ ) where parameter δ is given

by (16)

6 Calculate the constant vector p = Z̃π
7 for each u ∈ V do
8 H̃u = s ∥Z̃ :,u − p∥2

9 K̃ =
∑
u ∈V

su
s H̃u

10 return H̃ = {u, H̃u |u ∈ V } and K̃

5 NUMERICAL EXPERIMENTS
In this section, we present experimental results for various real

and model networks to demonstrate the efficiency and accuracy of

our approximation algorithm ApproxHK for computing the walk

centrality Hu of every vertex and the Kemeny constant K .
All experiments are conducted on a machine with 4-core 4.2GHz

Intel i7-7700K CPU and with 32GB of RAM. We implement the

approximation algorithm ApproxHK in Julia v0.6.0, where the

LaplSolve is from [20].

5.1 Results for Vertex Centrality of Real
Networks

We first test the algorithm for approximating centrality Hu on a

large set of realistic networks from different domains. The data of

these networks are taken from the Koblenz Network Collection [19].

For those networks that are disconnected originally, we perform our

experiments on their largest connected components (LCC). Related

information about the number of vertices and edges for the studied

real networks and their LCC is shown in Table 1, where networks

are listed in an increasing order of the number of vertices in the

original networks. The smallest network has 198 vertices, while the

largest one consists of more than 1.3 × 10
6
vertices.

We now investigate the efficiency of our approximation algo-

rithm ApproxHK . To this end, in Table 2, we report the running

time of ApproxHK and that of the direct accurate algorithm called

ExactHK that calculates the centrality Hu for each u ∈ V by calcu-

lating the pseudoinverse of L as given in Lemma 3.2. To objectively

evaluate the running time, for both ExactHK and ApproxHK on

all considered networks except the last seven ones marked with

∗, we enforce the program to run on a single thread. From Ta-

ble 2 we can see that for moderate approximation parameter ϵ , the
computational time for ApproxHK is significantly smaller than

that for ExactHK , especially for large-scale networks tested. Thus,

ApproxHK can significantly improve the performance compared

with ExactHK . For the seven networks marked with ∗, the num-

ber of vertices for which ranges from 10
5
to 10

6
, we cannot run

the ExactHK algorithm on the machine due to the limits of mem-

ory and time. However, for these networks, we can approximately

compute their walk centrality for all vertices by using algorithm

ApproxHK , which further show that ApproxHK is efficient and

scalable to large networks.

In addition to the high efficiency, our algorithm ApproxHK

also provides a desirable approximation Ĥu for the walk central-

ity Hu . To show the accuracy of ApproxHK , we compare the

approximate results for ApproxHK with the exact results com-

puted by Lemma 3.2. In Table 3, we report the mean relative er-

ror σ of algorithm ApproxHK , with σ being defined by σ =
1

n
∑
u ∈V |Hu − H̃u |/Hu . From Table 3 we can see that the actual

mean relative errors for all ϵ and all networks are very small, and are

almost negligible for smaller ϵ . More interestingly, for all networks

tested, σ are magnitudes smaller than the theoretical guarantee.

Therefore, the approximation algorithm ApproxHK provides very

accurate results in practice.

5.2 Results for Kemeny Constant of Model
Networks

To further demonstrate the performance of our proposed algorithm

ApproxHK , we use it to compute the Kemeny constant for some

model networks. Although for a general graph, the exact result

for its Kemeny constant is difficult to obtain, for some model net-

works generated by an iterative way, their Kemeny constant can

be determined explicitly. For example, for the pseudofractal scale-

free web [41] and the Koch network [40], one can obtain exact

expressions for their Kemeny constant.

Table 1: Statistics of the collection of datasets used in our ex-
periments. For a network with n vertices andm edges, we de-
note the number of vertices and edges in its largest connected
component by n′ andm′, respectively.

Network n m n′ m′

Jazz musicians 198 2,742 198 2,742

Chicago 1,467 1,298 823 822

Hamster full 2,426 16,631 2,000 16,098

Facebook (NIPS) 4,039 88,234 4,039 88,234

CA-GrQc 5,242 14,496 4,158 13,422

Reactome 6,327 147,547 5,973 145,778

Route views 6,474 13,895 6,474 12,572

Pretty Good Privacy 10,680 24,316 10,680 24,316

CA-HepPh 12,008 118,521 11,204 117,619

Astro-ph 18,772 198,110 17,903 196,972

CAIDA 26,475 53,381 26,475 53,381

Brightkite 58,228 214,078 56,739 212,945

Livemocha* 104,103 2,193,083 104,103 2,193,083

WordNet* 146,005 656,999 145,145 656,230

Gowalla* 196,591 950,327 196,591 950,327

com-DBLP* 317,080 1,049,866 317,080 1,049,866

Amazon* 334,863 925,872 334,863 925,872

Pennsylvania* 1,088,092 1,541,898 1,087,562 1,541,514

roadNet-TX* 1,379,917 1,921,660 1,351,137 1,879,201
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Table 2: The running time (seconds, s) of ExactHK and ApproxHK with var-
ious ϵ on several realistic networks.

Network ExactHK
ApproxHK (s) with various ϵ

(s) 0.3 0.25 0.2 0.15 0.1 0.05

Jazz musicians 0.001 0.020 0.026 0.043 0.071 0.144 0.613

Chicago 0.033 0.007 0.009 0.013 0.023 0.050 0.204

Hamster full 0.385 0.226 0.265 0.405 0.703 1.591 6.317

Facebook (NIPS) 2.889 0.965 1.338 1.972 3.408 7.501 30.92

CA-GrQc 3.127 0.306 0.383 0.590 1.039 2.336 9.345

Reactome 8.824 1.753 2.470 3.709 6.008 13.88 56.09

Route views 11.35 0.286 0.351 0.535 0.980 1.993 7.907

Pretty Good Privacy 47.79 0.746 0.907 1.450 2.494 5.928 21.17

CA-HepPh 54.39 1.937 2.496 3.792 7.018 15.35 57.16

Astro-ph 219.2 4.959 4.789 7.223 13.32 29.61 112.9

CAIDA 706.3 1.724 1.777 2.781 4.731 10.51 42.90

Brightkite 4589 8.595 9.090 13.81 24.50 49.39 220.7

Livemocha* – 57.33 79.59 125.7 210.0 464.3 1957

WordNet* – 23.03 31.51 48.15 96.36 188.4 1112

Gowalla* – 36.76 52.33 73.40 130.5 312.0 1189

com-DBLP* – 57.13 90.41 143.4 248.8 511.2 2250

Amazon* – 86.32 116.6 170.9 303.0 709.0 2523

Pennsylvania* – 290.4 433.1 647.1 1103 2701 13233

roadNet-TX* – 372.4 601.7 926.1 1555 3301 17522

Table 3: Mean relative error σ of ApproxHK (×10
−2).

Network
Mean relative error for various ϵ

0.3 0.2 0.1 0.05

Jazz musicians 10.2 7.23 3.89 1.79

Chicago 9.01 5.98 3.33 1.48

Hamster full 8.88 6.07 2.94 1.48

Facebook (NIPS) 9.25 5.78 2.86 1.51

CA-GrQc 7.94 5.25 2.64 1.33

Reactome 8.39 5.61 2.81 1.43

Route views 5.74 3.90 1.92 0.97

Pretty Good Privacy 7.03 4.75 2.34 1.19

CA-HepPh 7.67 5.20 2.57 1.28

Astro-ph 7.85 5.24 2.63 1.32

CAIDA 5.32 3.54 1.75 0.88

Brightkite 5.90 3.95 1.99 0.98

In the following we use algorithm ApproxHK to approximately

compute the Kemeny constant for the pseudofractal scale-free web

and the Koch network. One main justification for selecting these

two networks is that they display the remarkable scale-free small-

world properties as observed in most real networks [30]. Both the

pseudofractal scale-free web and the Koch network are constructed

in an iterative way. Their particular constructions allow to explicitly

determine their Kemeny constant.

Let Fд (д ≥ 0) denote the pseudofractal scale-free web after д
iterations. For д = 0, F0 consists of a triangle of three vertices and

three edges. For д > 0, Fд is obtained from Fд−1 as follows. For

each existing edge in Fд−1, a new vertex is created and linked to

both end vertices of the edge. Figure 1 schematically illustrates

the construction process of the pseudofractal scale-free web. In

g = 2

g = 0
g = 1

Figure 1: Illustration of the first several iterations of the
pseudofractal scale-free web.

network Fд , there are (3
д+1 + 3)/2 vertices and 3

д+1
edges. It has

been shown [41] that the Kemeny constant K(Fд) for Fд is

K(Fд) =
5

2

× 3
д −

5

3

× 2
д +

1

2

. (20)

The Koch network is also built in an iterative way. LetMд (д ≥ 0)

denote the Koch network after д iterations. Initially (д = 0), M0

is a triangle with three vertices and three edges. For д ≥ 1,Mд is

obtained fromMд−1 by performing the following operations. For

each of the three vertices in every existing triangle inMд−1, two

new vertices are created, both of which and their “mother” vertices

are connected to one another forming a new triangle. Figure 2

illustrates the growth process of the Koch network. In network

Mд , the number of vertices is 2×4
д +1, and the number of edges is

3 × 4
д
. In [40], the Kemeny constant K(Mд) for Mд was obtained

to be

K(Mд) = (1 + 2д) × 4
д +

1

3

. (21)
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Table 4: Exact Kemeny constant K , their approximation K̃ , relative error
ρ = (K − K̃)/K , and running time (seconds, s) for K̃ on networks F12 and
M10.K is obtained via (20) and (21), while K̃ is obtained through algorithm
ApproxHK with ϵ = 0.1.

Network Vertices Edges K K̃ Error ρ Time

F12 797,163 1,594,323 1,321,776 1,321,956 0.00014 207

M10 2,097,153 3,145,728 22,020,096 22,018,022 0.000094 1917

Figure 2: Construction process for the Koch network.

We use our algorithm ApproxHK to compute the Kemeny con-

stant on pseudofractal scale-free web F12 and the Koch network

M10. The numerical results are reported in Table 4, which shows

that the approximation algorithm ApproxHK works effectively

for both networks. This again demonstrates the advantage of our

proposed algorithm for large networks.

6 CONCLUSIONS
The hitting time of random walks arises in many practical scenar-

ios. However, the time cost of exactly computing hitting time is

prohibitively expensive. In this paper, we studied a walk central-

ity and Kemeny constant of a graph, both of which are actually

weighted average of hitting times and have found wide applications.

We established a link between the two quantities, and reformulated

them in terms of quadratic forms of the pseudoinverse of graph

Laplacian. Moreover, we provided a randomized approximation

algorithm with probabilistic guarantee, which computes the walk

centrality for all vertices and Kemeny constant in nearly linear time

with respect to the number of edges. Finally, we conducted exten-

sive experiments on various real-world and model networks, which

show that the proposed algorithm is both efficient and accurate,

especially for large-scale networks.
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