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ABSTRACT

One of the main subjects in the field of social networks is to quan-

tify conflict, disagreement, controversy, and polarization, and some

quantitative indicators have been developed to quantify these con-

cepts. However, direct computation of these indicators involves the

operations of matrix inversion and multiplication, which make it

computationally infeasible for large-scale graphs with millions of

nodes. In this paper, by reducing the problem of computing relevant

quantities to evaluating ℓ2 norms of some vectors, we present a

nearly linear time algorithm to estimate all these quantities. Our

algorithm is based on the Laplacian solvers, and has a proved theo-

retical guarantee of error for each quantity. We execute extensive

numerical experiments on a variety of real networks, which demon-

strate that our approximation algorithm is efficient and effective,

scalable to large graphs having millions of nodes.

CCS CONCEPTS

• Human-centered computing → Social network analysis; •

Networks → Network dynamics; • Information systems →

Social networks.
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1 INTRODUCTION

Online social networks and social media are increasingly becoming

an important part of our lives, which have led to a fundamental

change of ways people share and shape opinions [1, 13, 23]. Partic-

ularly, the enormous popularity of social media and online social

networks produces diverse social phenomena, such as polarization,

disagreement, conflict, and controversy, which have been a hot
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subject of study in different disciplines, especially social science. In

fact, some phenomena, for example, disagreement and polarization,

have taken place in human societies for millenia, but now they are

more apparent in an online virtual world.

In addition to the identification of aforementioned social phe-

nomena, the issue of how to quantify these phenomena has received

increasing amounts of attention. Thus far, various measures have

been developed to quantify these phenomena, such as disagree-

ment [10, 31], polarization [10, 29, 31], conflict [7], and contro-

versy [7]. Most of these measures are based on the Friedkin-Johnsen

(FJ) social-opinion dynamics model [17], which is an important

extension of the DeGroot’s opinion model [12]. Although the ex-

pressions of these quantitative metrics seem very concise, rigorous

determination for them in large-scale graphs is a computational

challenge, since it involves matrix inversion and multiplication.

In this paper, we address the problem of fast calculation for

the aforementioned quantitative measures related to opinion dy-

namics modelled by the well-established FJ model, by exploiting

the connection [7, 31] between forest matrix [5, 6] and these key

quantities. To this end, we first represent these quantities in terms

of the ℓ2 norm of some vectors. We then provide an algorithm to

approximate these quantities in nearly linear time with the number

of edges. Our algorithm has a proved error guarantee. Extensive

experiments on many real network datasets indicate that our al-

gorithm is efficient and effective, which is scalable to large graphs

with millions of nodes.

Related work. The focus of this paper is to propose a fast algo-

rithm approximately evaluating the quantitative metrics of some

key social phenomena. We use the FJ model as our underlying opin-

ion dynamics model. Below, we review some work that is closely

related to ours.

It is well known, the FJ model is a significant extension of the

DeGroot model for opinion dynamics, where opinion many be the

understanding or position of individuals on a certain popular topic

or subject. The DeGroot model is an iterative averaging model,

with each individual having only one opinion [12]. At each time

step, any individual updates its opinion as a weighted average of

its neighbors. For the DeGroot model on a connected graph, it will

reach consensus [2]. Under the formalism of the DeGroot model

or its variants, many consensus protocols have been proposed or

studied [32], especially in the literature of systems [14, 15, 22, 28, 36]

and cybernetics literature [34, 41–43].

Although the FJ model is an extension of the DeGroot model,

the former is significantly different from the latter. In the DeGroot

model, each node has only one opinion, while the FJ model asso-

ciates each node with two opinions: internal opinion and expressed

opinion. Since its establishment, the FJ model has attracted much

attention. A sufficient condition for stability of the FJ model was

obtained in [35], and the equilibrium expressed opinion was derived
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in [3, 11]. Some interpretations of the FJ model were provided in [3]

and [19]. And some optimization problems based on the FJ model

were also introduced, such as opinion maximization [20]. Moreover,

further extensions of the FJ model were suggested and studied in

recent papers [23, 38]. For example, some multidimensional exten-

sions have been presented for the FJ model [18, 33].

Except for the properties, interpretations, and extension of the FJ

model, some measures for disagreement [31], polarization [29, 31],

conflict [7], and controversy [7] for this popular model have also

been developed and studied. These quantitative metrics provide

deep insight into understanding social phenomena. However, exact

computation for these key measures is difficult and even impossible

for large graphs, since it takes cube running time. In this paper, we

give a computationally cheaper approach for approximating these

quantities.

2 PRELIMINARY

In this section, we briefly introduce some basic concepts about undi-

rected weighted graphs, Laplacian matrix, spanning (rooted) forest,

forest matrix, FJ opinion dynamics model, its relevant quantities

and their connections with the forest matrix.

2.1 Graph and Laplacian Matrix

Let G = (V ,E,w) be a connected undirected weighted simple graph

with n nodes andm edges, where V = {v1,v2, · · · ,vn } is the node
set, E = {e1, e2, · · · , em } is the edge set, andw : E → R+ is the edge
weight function, with the weight of an edge e denoted bywe . Let

wmax andwmin denote, respectively, the maximum and minimum

weight among all edges in E. A graph is a tree if it is connected but

has no cycles. We consider a graph with only an isolated node as a

tree. A forest is a particular graph that is a disjoint union of trees.

Thus, a forest may be connected or disconnected. In the sequel, we

interchangeably use vi and i to represent node vi if incurring no
confusion.

The connections of graph G are encoded in its extended adja-

cency matrix A = (wi j )n×n , with the element wi j at row i and
column j representing the strength of connection between nodes

i and j. If nodes i and j are adjacent by an edge e with weightwe ,

then wi j = w ji = we ; wi j = w ji = 0 otherwise. Let Θi be the set

of neighbours of node i . Then the weighted degree of a node i is
di =

∑n
j=1

wi j =
∑
j ∈Θi wi j . The weighted diagonal degree ma-

trix of G is defined as D = diag(d1,d2, . . . ,dn ), and the Laplacian

matrix of G is defined to be L = D − A.
An alternative construction of L is to use the incidence matrix

B ∈ R |E |× |V |
, which is anm×n signed edge-node incidence matrix.

The entry bev , e ∈ E and v ∈ V , of B is defined as follows: bev = 1

if node v is the head of edge e , bev = −1 if node v is the tail of

edge e , and bev = 0 otherwise. Let ei denote the i-th standard basis

vector. For an edge e ∈ E with two end nodes i and j, the row

vector of B corresponding to e can be written as bi j ≜ be = ei − ej .
LetW = diag(w1,w2, . . . ,wm ) be anm ×m diagonal matrix with

the e-th diagonal entry being the weight of edge we . Then the

Laplacian matrix L of G can also be represented as L = B⊤WB.
Moreover, L can be written as the sum of product of block matrices

as L =
∑
e ∈E webeb⊤e , which indicates that L is a symmetric and

positive semidefinite matrix.

The positive semidefiniteness of Laplacian matrix L implies that

all its eigenvalues are non-negative. Moreover, for a connected

graph G, its Laplacian matrix L has a unique zero eigenvalue. Let

1 denote the n-dimensional column vector with all entries being

ones, i.e. 1 = (1, 1 · · · , 1)⊤, which is an eigenvector of L associated

with eigenvalue 0. That is, L1 = 0, where 0 is the zero vector. Let

λ1 ≥ λ2 ≥ . . . ≥ λn−1 ≥ λn = 0 be the n eigenvalues of L, and let

ui be the orthogonal eigenvector corresponding to λi . Then, L has

an eigendecomposition of form L = UΛU⊤ =
∑n−1

i=1
λiuiu⊤i where

Λ = diag (λ1, λ2, .., λn−1, 0) and ui is the i-th column of matrix

U . Let λmax and λmin be, respectively, the maximum and nonzero

minimum eigenvalue of L. Then, λmax = λ1 ≤ nwmax [40], and

λmin = λn−1 ≥ wmin/n
2
[27].

2.2 Spanning Forests and Forest Matrix

For a graph G = (V ,E,w), a subgraphH is a graph whose sets of

nodes and edges are subsets of V and E, respectively. IfH and G

have the same node set V , we call H a spanning subgraph of G. A

spanning forest on G is a spanning subgraph of G that is a forest. A

spanning rooted forest of G is a spanning forest of G, where each

tree has a node marked as its root. For a subgraphH of graph G,

the product of the weights of all edges in H is referred to as the

weight of H , denoted as ε(H). If H has no edges, its weight is set

to be 1. For any nonempty set S of subgraphs, we define its weight

ε(S) as ε(S) =
∑

H∈S ε(H). If S is empty, we set its weight to be

zero [5, 6].

Suppose that Γ is the set of all spanning forests of graph G and

Γi j is the set of those spanning forests of G with nodes vi and vj
in the same tree rooted at node vi . Based on the above notions

associated with spanning rooted forests, we can define the forest

matrix Ω = Ω(G) of graph G [4, 21]. Let I be the identity matrix.

Then the forest matrix is defined as Ω = (I + L)−1 = (ωi j )n×n ,
where the entry ωi j = ε(Γi j )/ε(Γ) [5, 6]. For an arbitrary pair of

nodes vi and vj in graph G, ωi j ≥ 0 with equality if and only if G

is disconnected. Moreover, ωi j = 0 if and only if there is no path

between vi and vj [30].
If every edge in G has unit weight, then ε(Γ) is equal to the

total number of spanning rooted forests of G, and ε(Γi j ) equals
the number of spanning rooted forests of G, where nodes vi and
vj are in the same tree rooted at vi . For example, in the 5-node

path graph P5, there are exactly 55 spanning rooted forests, among

which there are 13 forests where v2 belongs to a tree rooted at v1.

Figure 1 illustrates all the 55 spanning rooted forests in P5, where

the 13 spanning rooted forests with green background are those,

for each of which v1 and v2 belong to the same tree with v1 being

the root. According to Fig. 1, the forest matrix for graph P5 is

Ω =
1

55

©­­­­­«
34 13 5 2 1

13 26 10 4 2

5 10 25 10 5

2 4 10 26 13

1 2 5 13 34

ª®®®®®¬
.

The forest matrix Ω is a symmetric and positive definite ma-

trix, the eigendecomposition of which can be written as Ω =

U Λ̃U⊤ =
∑n
i=1

1

λi+1
uiu⊤i where Λ̃ is a diagonal matrix given by

Λ̃ = diag( 1

1+λ1

,
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Figure 1: All the spanning rooted forests in the path graph

P5 with 5 nodes. Those with green background are forests

with v2 being in a tree rooted at v1. The full nodes denote

root nodes.

· · · , 1

1+λn−1

, 1

1+λn
) with 1

1+λ1

≤ 1

1+λ2

≤ · · · ≤ 1

1+λn
= 1. It has

been shown that [5, 6] Ω is a doubly stochastic matrix satisfy-

ing Ω1 = 1 and 1
⊤Ω = 1

⊤
. For any connected graph, ωi j > 0.

Moreover,

∑n
j=1

ωi j = 1 for i = 1, 2, . . . ,n, and
∑n
i=1

ωi j = 1 or

j = 1, 2, . . . ,n.
The forestmatrixΩ is related to various practical applications [16,

24, 39]. For example, its entry ωi j can be used to gauge the proxim-

ity between nodes vi and vj : the less the value of ωi j , the “farther”
vi from vj [5]. Furthermore, since Ω is doubly stochastic, ωi j can
be explained as the fraction of the connectivity of vi and vj in the

total connectivity of vi (or vj ) with all nodes [6].

Particularly, forest matrix is in fact the fundamental matrix [29]

of the FJ opinion dynamics model [17]. Various important quantities

of the FJ model can be expressed in terms of the linear combination

of the entries for forestmatrix or quadric forms of forestmatrix or its

variant matrices [3, 7, 31]. In the sequel, we will show that by using

the properties of forest matrix, one can provide a fast algorithm

evaluating relevant quantities for the FJ opinion dynamics model.

3 FRIEDKIN-JOHNSEN OPINION DYNAMICS

MODEL AND ITS RELEVANT QUANTITIES

This section is denoted to brief introduction to the FJ model of

opinion formation, as well as the definitions and measures for

conflict, disagreement, polarization, and controversy, relying on

this popular model. Particularly, we give an explanation and some

properties of equilibrium expressed opinions of the FJ model, using

the forest matrix.

3.1 Friedkin-Johnsen Model

As one of the first opinion dynamics models, the FJ model [17] is

an extension of the DeGroot’s opinion model [12]. In the DeGroot

model, every node has only one opinion that is updated as the

weighted average of its neighbors. Different from the DeGroot

model, in the FJ model, each node i ∈ V has two different kinds

of opinions: one is the internal (or innate) opinion si , the other

is the expressed opinion zi . The internal opinion si is assumed to

remain constant, private to node i , while the expressed opinion zi

evolves as a weighted average of its corresponding internal opinion

si and the expressed opinions of i’s neighbors. More precisely, the

updating rule of zi is

zi =
si +

∑
j ∈Θi wi jzj

1 +
∑
j ∈Θi wi j

. (1)

Note that in the above updating process, we make a common

assumption in the literature that the weight of internal opinion

is unit. On the other hand, as popular choice in the literature, we

assume that for all i ∈ V , its internal opinion si is in the inter-

val [0, 1]. Let s = (s1, s2, . . . , sn )
⊤
. Then the expressed opinions

updated by iterative process (1) converge to a unique equilibrium

opinion vector. Let z = (z1, z2, . . . , zn )
⊤
, with the value zi being

the expressed opinion of node i at equilibrium. It was shown [3]

that the equilibrium expressed opinion vector z is the solution to a

linear system of equations:

z = (I + L)−1s. (2)

Equation (2) shows that the equilibrium expressed opinion for

every node is determined by the forest matrix Ω = (I + L)−1
,

with zi given by zi =
∑n
j=1

ωi jsj , for each i ∈ V . Concretely,

for all i = 1, 2 . . . ,n, zi is a weighted average of internal opin-

ions of all nodes, with the weight of internal opinion sj being ωi j ,
where j = 1, 2 . . . ,n. Considering that Ω is a doubly stochastic and

si ∈ [0, 1] for all i = 1, 2 . . . ,n, we have that for every i , zi ∈ [0, 1].

Moreover,

∑n
i=1

si =
∑n
i=1

zi , which means that the total expressed

opinion is equal to the total internal opinion, although the equi-

librium expressed opinion for a single node may be different from

its internal opinion. This conservation law is independent of the

network structure. In this sense, we provide a novel interpretation

and some properties of equilibrium expressed opinion vector z ac-
cording to the forest matrix. Our interpretation is different from

previous ones, which are in terms of game theory [3] and electrical

networks [19], respectively.

3.2 Measures for Conflict, Disagreement,

Polarization, and Controversy

In the FJ model, the opinions of nodes often do not reach consensus,

leading to conflict, disagreement, polarization, and controversy,

which are common phenomena in social networks and have been

the subject of many recent works. Below we survey some quan-

titative measures of these phenomena based on the FJ opinion

formation model.

As known to us all, in the FJ model, individuals differ in their

internal opinions and expressed opinions. The extent of this differ-

ence can be measured by internal conflict defined as follows [7].

Definition 3.1. For a graph G = (V ,E,w), its internal conflict

CI(G) is the sum of squares of the differences between internal and

expressed opinions over all nodes:

CI(G) =
∑
i ∈V

(zi − si )
2 . (3)

Definition 3.2. [10, 31] For a graph G = (V ,E,w), its disagree-

ment D(G) is defined by

D(G) =
∑

(i, j)∈E

wi j (zi − zj )
2. (4)
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Note that the disagreement D(G) is called external conflict of

graph G in [7]. We also note that the FJ model has been used

to understand the price of anarchy in society when individuals

selfishly update their opinions with an aim to minimize the stress

they experience [3]. The stress of a node i is defined as (zi − si )
2 +∑

j ∈Θi wi j (zi − zj )
2
, while the sum of the stress for all nodes is

CI(G) + D(G), which is exactly the sum of internal conflict and

external conflict defined above.

If the equilibrium expressed opinions have an increased diver-

gence, we say that opinion formation dynamics are polarizing.

Intuitively, polarization should measure how equilibrium expressed

opinions deviate from their average. There are many ways to quan-

tify polarization. We here choose the metric proposed in [31] to

measure polarization.

Definition 3.3. For a graph G = (V ,E,w), let z̄ be the mean-

centered equilibrium vector given by z̄ = z − z⊤1
n 1. Then the polar-

ization P(G) is defined to be:

P(G) =
∑
i ∈V

z̄2

i = z̄⊤z̄. (5)

In addition to P(G), the polarization can also be measured by

the controversy that quantifies how much the expressed opinion

varies across the individuals in the whole graph G.

Definition 3.4. For a graph G = (V ,E,w), the controversy C(G)
is the sum of the squares of the equilibrium expressed opinions:

C(G) =
∑
i ∈V

z2

i = z⊤z. (6)

In [29], the quantity C(G)/n is introduced as the polarization

index.

There can be a tradeoff between disagreement and controversy [31].

The sumof the disagreement and controversy is called disagreement-

controversy index, which is named polarization-disagreement index

in [31].

Definition 3.5. For a graph G = (V ,E,w), the disagreement-

controversy index I
dc
(G) is the sum of the disagreement D(G) and

controversy C(G) :

I
dc
(G) = D(G) +C(G). (7)

It is easy to verify [7, 31] that the disagreement-controversy

index I
dc
(G) is equal to the inner product between internal opinion

vector s and expressed opinion vector z, that is, I
dc
(G) =

∑n
i=1

sizi .

Let s̄ = s − 1⊤s
n 1. The above-mentioned quantities can be ex-

pressed in matrix-vector notation as stated in Proposition 1 [7, 31].

Proposition 1. For a graph G = (V ,E,w), the internal conflict

CI(G), disagreement D(G), polarization P(G), controversyC(G), and
disagreement-controversy index I

dc
(G) can be conveniently expressed

in terms of quadratic forms as:

CI(G) = z⊤L2z = s⊤(I + L)−1L2(I + L)−1s, (8)

D(G) = z⊤Lz = s⊤(I + L)−1L(I + L)−1s, (9)

P(G) = z̄⊤z̄ = s̄⊤(I + L)−1(I + L)−1s̄, (10)

C(G) = z⊤z = s⊤(I + L)−1(I + L)−1s, (11)

I
dc
(G) = s⊤z = s⊤(I + L)−1s. (12)

Notice that matrices L and (I + L)−1
have identical eigenspaces,

implying that they commute, that is, L(I +L)−1 = (I +L)−1L. Thus,
we have

CI(G) = s̄⊤(I + L)−1L2(I + L)−1s̄,

D(G) = s̄⊤(I + L)−1L(I + L)−1s̄,

due to L1 = 0.

After expressing the quantities concerned, in what follows we

will provide a fast algorithm evaluating these quantities.

4 FAST APPROXIMATION ALGORITHM FOR

CONFLICT, DISAGREEMENT,

POLARIZATION, AND CONTROVERSY

As shown in Proposition 1, for internal conflict CI(G), disagree-

mentD(G), polarization P(G), controversyC(G), and disagreement-

controversy index I
dc
(G), exactly computing them needs to invert

matrix L + I , which takes O(n3) time. This is computationally im-

practical for large graphs.

In this section, we develop a fast algorithm for approximately

evaluating those interesting quantities in nearly linear time with

respect of the number of edges in G. To achieve this goal, we

first reduce the problem for evaluating the above quantities to

computing the ℓ2 norm of different vectors. Then, we estimate

the ℓ2 norm by applying linear system solvers [9, 26] in order to

significantly reduce the computational complexity.

According to Proposition 1, we can explicitly represent the con-

cerned quantities in ℓ2 norm of vectors as stated in Lemma 4.1.

lemma 4.1. For a graph G = (V ,E,w), the internal conflictCI(G),

disagreementD(G), polarization P(G), controversyC(G), and disagreement-

controversy index I
dc
(G) can be expressed, respectively, in terms of ℓ2

norm as:

CI(G) = z⊤L2z = ∥L(I + L)−1s∥2, (13)

D(G) = z⊤Lz = ∥W1/2B(I + L)−1s∥2, (14)

P(G) = z̄⊤z̄ = ∥(I + L)−1s̄∥2, (15)

C(G) = z⊤z = ∥(I + L)−1s∥2, (16)

I
dc
(G) = ∥W1/2B(I + L)−1s∥2 + ∥(I + L)−1s∥2, (17)

whereW1/2
is a diagonal matrix defined asW1/2 = diag(

√
w1,

√
w2,√

w3, . . . ,
√
wm ).

Having reduced the computation of the relevant quantities to

evaluating ℓ2 norms of some vectors in Rn or Rm , we continue to

compute the ℓ2 norms. However, directly calculating the ℓ2 norms

does not help to reduce the computational cost, since it still requires

inverting matrix I + L. In order to reduce computational time, we

resort to the efficient linear system solvers [9], which avoids the

inverse operation by solving a system of equations [26].

lemma 4.2. There is a nearly linear time solver y = Solve (T , x,δ ),
which takes an n × n positive semi-definite matrix T with m non-

zero entries, a column vector x, and an accuracy parameter δ , and

returns a column vector y satisfying ∥y − T†x∥T ≤ δ ∥T†x∥T , where
∥v∥T =

√
v⊤Tv and T†

is the pseudo-inverse of T . The expected time

for performing this solver is O
(
m log

3 n log

(
1

δ

))
.
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Lemma 4.2 can significantly reduce the computational time for

evaluating those quantities in the form of (I + L)x with an ideal

approximation guarantee. For example, as will be shown below,

p = Solve(I + L, s,δ ) is a good approximation of the expressed

opinion vector z.
We next use Lemma 4.2 to obtain approximations for the quanti-

ties concerned. Prior to this, we introduce some notations and their

properties. Let a ≥ 0 and b ≥ 0 be two nonnegative scalars. We say

a is an ϵ-approximation (0 ≤ ϵ ≤ 1/2) of b if (1−ϵ)a ≤ b ≤ (1+ϵ)a,
denoted by a ≈ϵ b. The ϵ-approximation has the following ba-

sic property: For nonnegative scalars a, b, c , and d , if a ≈ϵ b and

c ≈ϵ d , then a + c ≈ϵ b + d . For two matrices X and Y , we write
X ⪯ Y if Y − X is positive semidefinite, that is, x⊤Xx ≤ x⊤Yx
holds for every real vector x. Then, we have I ⪯ I + L, L ⪯ I + L,
I + L ⪯ wmax(n + 1)I , and 1

n wmax

L ⪯ I . These relations are use-
ful to prove the following lemmas, which we will apply to obtain

ϵ-approximation for the quantities we care about.

lemma 4.3. Given an undirected weighted graph G = (V ,E,w)

with each edge weight in the interval [wmin,wmax], the Laplacian

matrix L, and a parameter ϵ ∈ (0, 1

2
), let x be an arbitrary vector,

and let y = Solve (I + L, x,δ ), where

δ ≤
ϵ

3

√
wmax(n + 1)

.

Then, the following relation holds:

(1 − ϵ)∥(I + L)−1x∥2 ≤ ∥y∥2 ≤ (1 + ϵ)∥(I + L)−1x∥2.

Proof. According to Lemma 4.2, we have

∥y − (I + L)−1x∥2

I+L ≤ δ2∥(I + L)−1x∥2

I+L.

The term on the left-hand side (lhs) can be bounded as

∥y − (I + L)−1x∥2

I+L ≥∥y − (I + L)−1x∥2

≥
��∥y∥ − ∥(I + L)−1x∥

��2 ,
while the term on the right-hand side (rhs) can be bounded as

∥(I + L)−1x∥2

I+L ≤ wmax(n + 1)∥(I + L)−1x∥2.

Combining the above-obtained relations, we have��∥y∥ − ∥(I + L)−1x∥
��2

≤ δ2wmax(n + 1)∥(I + L)−1x∥2,

which implies��∥y∥ − ∥(I + L)−1x∥
��

∥(I + L)−1x∥
≤
√
δ2wmax(n + 1) ≤

ϵ

3

and

(1 −
ϵ

3

)2∥(I + L)−1x∥2 ≤ ∥y∥2

≤ (1 +
ϵ

3

)2∥(I + L)−1x∥2.

Considering 0 < ϵ < 1

2
, we get

(1 − ϵ)∥(I + L)−1x∥2 ≤ ∥y∥2

≤ (1 + ϵ)∥(I + L)−1x∥2,

which completes the proof. □

lemma 4.4. Given an undirected weighted graph G = (V ,E,w)

with each edge weight in the interval [wmin,wmax], the incident ma-

trix B, diagonal edge weight matrix W , Laplacian matrix L, and a

parameter ϵ ∈ (0, 1

2
), let s = (s1, s2, . . . , sn )

⊤
be the internal opin-

ion vector with each si ∈ [0, 1] for i = 1, 2, . . . ,n, s̄ = s − 1⊤s
n 1 =

(s̄1, s̄2, . . . , s̄n )
⊤
be the mean-centered internal opinion vector, and let

q = Solve (I + L, s̄,δ ), where

δ ≤
ϵ ∥s̄∥

3wmaxn(n + 1)

√
wmin

wmaxn(n + 1)
.

Then, the following relation holds:

(1 − ϵ)∥W1/2B(I + L)−1s̄∥2

≤∥W1/2Bq∥2 ≤ (1 + ϵ)∥W1/2B(I + L)−1s̄∥2.

Proof. By Lemma 4.2, we have

∥q − (I + L)−1s̄∥2

I+L ≤ δ2∥(I + L)−1s̄∥2

I+L.

The lhs can be bounded as

∥q − (I + L)−1s̄∥2

I+L

≥∥q − (I + L)−1s̄∥2

L

=∥W1/2Bq −W1/2B(I + L)−1s̄∥2

≥

���∥W1/2Bq∥ − ∥W1/2B(I + L)−1s̄∥
���2 ,

while rhs is bounded as

∥(I + L)−1s̄∥2

I+L ≤ wmax(n + 1)∥(I + L)−1s̄∥2

≤ n(n + 1)wmax,

where s̄i ≤ 1, i = 1, 2, . . . ,n, is used. Combining the above-obtained

results gives ���∥W1/2Bq∥ − ∥W1/2B(I + L)−1s̄∥
���2

≤ δ2n(n + 1)wmax.

On the other hand, since s̄⊤1 = 0 due to s̄ = s − 1⊤s
n 1,

∥W1/2B(I + L)−1s̄∥2 ≥
wmin

n2(n + 1)2w2

max

∥s̄∥2.

Thus, one has ���∥W1/2Bq∥ − ∥W1/2B(I + L)−1s̄∥
���

∥W1/2B(I + L)−1s̄∥

≤

√
δ2n3(n + 1)3w3

max

wmin∥s̄∥2
≤

ϵ

3

.

In other words,

(1 −
ϵ

3

)2∥W1/2B(I + L)−1s̄∥2

≤∥W1/2Bq∥2 ≤ (1 +
ϵ

3

)2∥W1/2B(I + L)−1s̄∥2.

Because 0 < ϵ < 1

2
, we obtain

(1 − ϵ)∥W1/2B(I + L)−1s̄∥2

≤∥W1/2Bq∥2 ≤ (1 + ϵ)∥W1/2B(I + L)−1s̄∥2,

which completes the proof. □
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lemma 4.5. Given an undirected weighted graph G = (V ,E,w)

with each edge weight in the interval [wmin,wmax], Laplacian matrix

L, and a parameter ϵ ∈ (0, 1

2
), let s = (s1, s2, . . . , sn )

⊤
be the internal

opinion vector with each si ∈ [0, 1] for i = 1, 2, . . . ,n, s̄ = s− 1⊤s
n 1 =

(s̄1, s̄2, . . . , s̄n )
⊤
be the mean-centered internal opinion vector, q =

Solve (I + L, s̄,δ ), where

δ ≤
ϵwmin∥s̄∥

3w2

max
n3(n + 1)

√
n + 1

.

Then, the following relation holds:

(1 − ϵ)∥L(I + L)−1s̄∥2 ≤ ∥Lq∥2

≤ (1 + ϵ)∥L(I + L)−1s̄∥2.

Proof. Making use of Lemma 4.2, we obtain

∥q − (I + L)−1s̄∥2

I+L ≤ δ2∥(I + L)−1s̄∥2

I+L.

The term on the lhs can be bounded as

∥q − (I + L)−1s̄∥2

I+L

≥∥q − (I + L)−1s̄∥2 ≥
1

nwmax

∥Lq − L(I + L)−1s̄∥2

≥
1

nwmax

��∥Lq∥ − ∥L(I + L)−1s̄∥
��2 .

According to the proof of Lemma 4.4,

∥(I + L)−1s̄∥2

I+L ≤n(n + 1)wmax.

Thus, we have��∥Lq∥ − ∥L(I + L)−1s̄∥
��2 ≤ δ2n2(n + 1)w2

max
.

On the other hand,

∥L(I + L)−1s̄∥2 ≥
w2

min

n4(n + 1)2w2

max

∥s̄∥2.

Combining the above relations leads to��∥Lq∥ − ∥L(I + L)−1s̄∥
��

∥L(I + L)−1s∥
≤

√
δ2n6(n + 1)3w4

max

w2

min
∥s̄∥2

≤
ϵ

3

,

which can be recast as

(1 −
ϵ

3

)2∥L(I + L)−1s̄∥2 ≤ ∥Lq∥2

≤ (1 +
ϵ

3

)2∥L(I + L)−1s̄∥2.

Using the condition 0 < ϵ < 1

2
, one obtains

(1 − ϵ)∥L(I + L)−1s̄∥2 ≤ ∥Lz̃∥2

≤ (1 + ϵ)∥L(I + L)−1s̄∥2,

which completes the proof. □
Based on the Lemmas 4.2, 4.3, 4.4, and 4.5, we propose a fast and

efficient algorithm Approxim to approximate the internal conflict

CI(G), disagreement D(G), polarization P(G), controversy C(G),
and disagreement-controversy index I

dc
(G) for any undirected

weighted graph G. In Algorithm 1, we present the pseudocode

of Approxim, where δ is less than or equal to the parameters δ ’s in
Lemmas 4.3, 4.4, and 4.5.

Our approximation algorithm Approxim is both accurate and

efficient, as summarized in Theorem 4.1.

Algorithm 1: Approxim (G, s, ϵ)
Input :G: a graph with edge weight in [wmin,wmax]

s: initial opinion vector

ϵ : the error parameter in (0, 1

2
)

Output : {C̃I(G), D̃(G), P̃(G), C̃(G), Ĩdc
(G)}

1 δ = ϵwmin ∥s∥
3w2

max
n3(n+1)

√
n+1

2 s̄ = s − 1⊤s
n 1

3 z̃ = Solve(I + L, s,δ )
4 q = Solve(I + L, s̄,δ )
5 C̃I(G) = ∥Lz̃∥2

6 D̃(G) = ∥W1/2Bq∥2

7 P̃(G) = ∥q∥2

8 C̃(G) = ∥z̃∥2

9 Ĩ
dc
(G) = D̃(G) + C̃(G)

10 return {C̃I(G), D̃(G), P̃(G), C̃(G), Ĩdc
(G)}

theorem 4.1. Given an undirected weighted graph G with n
nodes and m edges, an error parameter ϵ ∈ (0, 1

2
), and the inter-

nal opinion vector s, the algorithm Approxim (G, s, ϵ) runs in ex-

pected time O
(
m log

4 n log

( r
ϵ
) )

where r = wmax

wmin

, and returns the ϵ-

approximation C̃I(G), D̃(G), P̃(G), C̃(G), Ĩdc
(G) for the internal con-

flictCI(G), disagreement D(G), polarization P(G), controversyC(G),
and disagreement-controversy index I

dc
(G), satisfying C̃I(G) ≈ϵ

CI(G), D̃(G) ≈ϵ D(G), P̃(G) ≈ϵ P(G), C̃(G) ≈ϵ C(G), and Ĩdc
(G) ≈ϵ

I
dc
(G).

5 EXPERIMENTS

In this section, we assess the efficiency and accuracy of our ap-

proximation algorithm Approxim. To this end, we implement this

algorithm on various real networks and compare the running time

and accuracy of Approxim with those corresponding to the ex-

act algorithm, called Exact. For the Exact, it computes relevant

quantities by directly inverting matrix I + L, performing product

of related matrices, and then calculating corresponding ℓ2 norms.

Environment. Our extensive experiments were run on a Linux

box with 4-core 4.2GHz Intel i7-7700K CPU and 32GB of main

memory. Our code for both the approximation algorithm Approxim

and exact algorithm Exact was written in Julia v1.5.1. The solver

Solve we use is based on the technique in [26], the Julia language

implementation for which is open and accessible on the website
1
.

Datasets. All the real-world networks we consider are publicly

available in the Koblenz Network Collection [25] and Network

Repository [37]. The first three columns of Table 1 are related

information of networks, including the network name, the number

of nodes, and the number of edges. For a network with n nodes

andm edges, we use n′ andm′
to denote, respectively, the number

of nodes and edges in its largest connected component. All our

experiments were conducted on the largest connected components.

The smallest network consists of 4991 nodes, while the largest

network has more than one million. In Table 1, the networks listed

1
http://danspielman.github.io/Laplacians.jl/latest/
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Table 1: Statistics of real-world networks used in our experiments and comparison of running time (seconds, s) between Exact

and Approxim for three internal distributions (uniform distribution, exponential distribution, and power-law distribution)

with error parameter ϵ = 10
−6
.

Running time (s ) for algorithms Exact and Approxim

Network n′ m′ Uniform distribution Exponential distribution Power-law distribution

Exact Approxim Exact Approxim Exact Approxim

Erdös992 4,991 7,428 2.24 2.66 2.29 2.65 2.51 2.72

Advogato 5,054 43,015 2.75 2.80 2.43 2.71 2.51 2.77

PagesGovernment 7,057 89,429 7.52 2.70 9.72 2.75 7.82 2.59

WikiElec 7,066 100,727 7.59 2.69 6.68 2.69 7.34 2.63

HepPh 11,204 117,619 28.14 2.74 27.67 2.61 27.58 2.62

Anybeat 12,645 49,132 40.59 2.65 40.87 2.74 40.21 2.73

PagesCompany 14,113 52,126 56.02 2.78 55.61 2.96 55.67 2.75

AstroPh 17,903 196,972 115.50 2.91 117.64 2.87 117.59 2.82

CondMat 21,363 91,286 204.15 2.83 215.57 3.04 200.75 2.59

Gplus 23,613 39,182 279.41 2.82 281.00 2.96 274.52 2.75

GemsecRO 41,773 125,826 1585.75 3.52 1621.83 3.17 1587.00 3.27

GemsecHU 47,538 222,887 2410.30 6.52 2395.84 7.24 2430.26 6.95

PagesArtist 50,515 819,090 2895.73 10.06 2976.45 7.50 3017.09 8.07

Brightkite 56,739 212,945 4203.67 8.66 4312.25 6.74 4072.74 8.53

Themarker 69,317 1,644,794 — 5.02 — 5.04 — 5.09

Slashdot 70,068 358,647 — 3.31 — 3.36 — 3.34

BlogCatalog 88,784 2,093,195 — 5.54 — 5.50 — 5.53

WikiTalk 92,117 360,767 — 3.21 — 3.28 — 3.29

Buzznet 101,163 2,763,066 — 6.39 — 6.33 — 6.31

LiveMocha 104,103 2,193,083 — 6.46 — 6.44 — 6.46

Douban 154,908 327,162 — 3.30 — 3.35 — 3.37

Gowalla 196,591 950,327 — 4.43 — 4.30 — 4.29

Academia 200,167 1,022,440 — 4.51 — 4.44 — 4.49

GooglePlus 201,949 1,133,956 — 4.33 — 4.33 — 4.30

Citeseer 227,320 814,134 — 4.04 — 3.87 — 4.02

MathSciNet 332,689 820,644 — 4.32 — 4.37 — 4.27

TwitterFollows 404,719 713,319 — 3.91 — 3.94 — 3.86

Flickr 513,969 3,190,452 — 8.21 — 8.22 — 8.07

Delicious 536,108 1,365,961 — 5.48 — 5.39 — 5.30

IMDB 896,305 3,782,447 — 11.10 — 11.22 — 10.75

YoutubeSnap 1,134,890 2,987,624 — 9.00 — 8.89 — 8.98

Lastfm 1,191,805 4,519,330 — 11.79 — 11.79 — 12.12

Pokec 1,632,803 22,301,964 — 75.91 — 76.50 — 76.14

Flixster 2,523,386 7,918,801 — 19.46 — 19.67 — 19.56

LiveJournal 4,033,137 27,933,062 — 80.60 — 80.15 — 79.40

Table 2: Relative error for estimated C̃I(G), D̃(G), P̃(G), C̃(G) for three internal distributions with input parameter ϵ = 10
−6
.

Network G

Relative error of four estimated quantities for three internal opinion distributions (×10
−7
)

Uniform distribution Exponential distribution Power-law distribution

C̃I(G) D̃(G) P̃(G) Ĩ
dc
(G) C̃I(G) D̃(G) P̃(G) Ĩ

dc
(G) C̃I(G) D̃(G) P(G) Ĩ

dc
(G)

Erdös992 1.1002 0.0018 0.0018 0.1379 6.5276 0.0077 0.0078 0.0903 1.3976 0.0010 0.0009 0.0372

Advogato 2.6516 0.0058 0.0077 0.0900 2.0039 0.0138 0.0186 0.0827 0.0975 0.0022 0.0025 0.0015

PagesGovernment 0.6307 0.0214 0.0544 0.0432 5.1476 0.0068 0.0165 0.0643 0.0926 0.0020 0.0076 0.2168

WikiElec 1.0029 0.0021 0.0030 0.0826 4.9890 0.0002 0.0003 0.0582 0.1049 0.0074 0.0220 0.0516

HepPh 0.5886 0.0009 0.0015 0.2008 0.6633 0.0039 0.0063 0.0605 2.5963 0.0051 0.0098 0.0380

Anybeat 0.1904 0.0152 0.0185 0.0366 0.6107 0.0064 0.0077 0.1517 0.0256 0.0044 0.0067 0.0532

PagesCompany 0.6721 0.0090 0.0129 0.0038 0.7049 0.0046 0.0069 0.0061 0.8048 0.0099 0.0136 0.2874

AstroPh 0.8058 0.0051 0.0109 0.1292 2.9936 0.0020 0.0041 0.0873 0.0143 0.0012 0.0120 0.0122

CondMat 2.0614 0.0051 0.0088 0.1528 2.1314 0.0027 0.0049 0.0670 0.2099 0.0056 0.0155 0.0666

Gplus 1.6386 0.0012 0.0014 0.2219 0.4878 0.0001 0.0001 0.0198 0.1471 0.0005 0.0006 0.0756

GemsecRO 4.5966 0.0230 0.0358 0.3691 2.1684 0.0069 0.0109 0.1042 2.0774 0.0257 0.0507 0.4375

GemsecHU 0.4021 0.0342 0.0826 0.2018 4.6511 0.0153 0.0369 0.1320 0.8842 0.0003 0.0004 0.0831

PagesArtist 1.9994 0.0093 0.0228 0.4941 1.3243 0.0077 0.0194 0.4454 0.0419 0.0026 0.0125 0.0766

Brightkite 1.2047 0.0022 0.0026 0.1436 0.5782 0.0190 0.0221 0.1564 0.5104 0.0421 0.0324 0.0027
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in an increasing order of the number of nodes in their largest

connected components.

Internal opinion distributions. In our experiments, the inter-

nal opinions are generated according to three different distributions:

uniform distribution, exponential distribution, and power-law dis-

tribution, with the latter two distributions generated according by

the randht.py file in [8]. For the uniform distribution, the opinion si
of node i is distributed uniformly in the range of [0, 1]. For the ex-

ponential distribution, we choose the probability density e
xmine−x

to generate n′ positive numbers x with minimum value xmin > 0.

Then, dividing each x by the maximum observed value, we nor-

malize these n′ numbers to the range [0, 1] as the internal opinions

of nodes. Note that there is always a node with internal opinion 1

due to the normalization operation. Similarly, for the power-law

distribution, we use the probability density (α − 1)xα−1

min
x−α with

α = 2.5 to generate n′ positive numbers, and normalize them to

interval [0, 1] as the internal opinions.

Efficiency. Table 1 reports the running time of the two algo-

rithms Approxim and Exact on different networks we consider in

the experiments. We note that we cannot compute those related

quantities using the algorithm Exact for the last 7 networks, due

to the high memory and time cost, but we can run the algorithm

Approxim. In all our experiments, we set the error parameter ϵ
equal to 10

−6
. For each of the three internal opinion distributions

in different networks, we record the running times of Approxim

and Exact. Table 1 shows that for all considered networks, the run-

ning time for Approxim is less than that for Exact. For moderately

large networks with more than ten thousand nodes, Exact is much

slower than Approxim. For example, for the GemsecRO network,

the running time for Approxim is less than one hundredth of that

for Exact. Finally, for large graphs particularly those with over 150

thousand nodes, our approximation algorithm Approxim shows

a very obvious efficiency advantage, since Exact fails to run for

these networks.

Accuracy. Except for the high-efficiency, our approximation

algorithm Approxim has also high-accuracy in practice. To demon-

strate this, we assess the accuracy of algorithm Approxim in Table 2.

For each of the three distributions of internal opinions, we com-

pare the approximate results of Approxim with the exact result

of Exact for all networks examined but the last seven ones in Ta-

ble 2. For each quantity ρ concerned, we use the mean relative error

σ = |ρ − ρ̃ |/ρ of ρ̃ obtained by Approxim as an estimation of ρ. In
Table 2, we present the mean relative errors of the four estimated

quantities, internal conflict C̃I(G), disagreement D̃(G), polarization

P̃(G), and controversy C̃(G), for different real networks with input

error parameter ϵ = 10
−6
. The results show that for all quantities

concerned of all networks examined, the actual relative errors are

ignorable, with all errors less than 10
−7
, much smaller than the

proved theoretical guarantee.

6 CONCLUSION

Conflict, disagreement, controversy, and polarization in social net-

works have received considerable recent attention, and some indices

have been proposed to quantify these concepts. However, direct

computation of these quantities is computationally challenging for

large networks, because it involves inverting matrices. In this paper,

we addressed the problem of efficiently computing these quantities

in an undirected unweighted graph. To this end, we developed an

approximation algorithm that is based on seminal work about Lapla-

cian solver for solving linear system of equations, which can avoid

the operation of matrix inversion. The algorithm has an almost

linear computation complexity with respect to the number of edges

in the graph, and simultaneously possesses a theoretical guarantee

for accuracy. We performed extensive experiments on a diverse set

of real network datasets to demonstrate that our presented approx-

imation algorithm works both efficiently and effectively, especially

for large-scale networks with millions of nodes.
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