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The mixing time of random walks on a graph has found broad applications across both theoretical
and practical aspects of computer science, with the application effects depending on the behavior
of mixing time. It is extensively believed that real-world networks, especially social networks, are
fast mixing with their mixing time at most O(log N) where N is the number of vertices. However,
the behavior of mixing time in the real-life networks has not been examined carefully, and exactly
analytical research for mixing time in models mimicking real networks is still lacking. In this paper,
we first experimentally evaluate the mixing time of various real-world networks with scale-free
small-world properties and show that their mixing time is much higher than anticipated. To better
understand the behavior of the mixing time for real-world networks, we then analytically study the
mixing time of the Apollonian network, which is simultaneously scale-free and small-world. To this
end, we derive the recursive relations for all eigenvalues, especially the second largest eigenvalue
modulus of the transition matrix, based on which we deduce a lower bound for the mixing time of
the Apollonian network, which approximately scales sublinearly with N. Our results indicate that
real-world networks are not always fast mixing, which has potential implications in the design of

algorithms related to mixing time.
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1. INTRODUCTION

Random walks on a network is a powerful tool in various
disciplines, and understanding the behavior of random walks
is important for their applications [1, 2]. One of the most
important quantities related to random walks is the mixing
time [3, 4]. For a discrete-time random walk on a network, the
mixing time is defined as the steps the walker needs to jump
till it approaches the stationary distribution, regardless of the
initial state [5]. Mixing time reflects the global characteristic of
a network and has found applications in numerous aspects [4],
such as constructing gossip [6] and sampling [7–9] algorithms,
and designing security defenses and communication systems
[10–13]. Due to the wide range of applications, mixing time has
received much recent attention from the scientific community
[14–21].

The application effects of mixing time highly rely on the
properties of mixing time in the underlying network. It is
widely believed that most real-world networks, especially

social networks, are fast mixing. That is, for random walks
on a graph with N nodes, when the walk length approaches
O(log N), the probability distribution that the walk ends a
certain vertex converges to the stationary distribution. Although
this property has not been confirmed for real-world networks
yet, it has been widely applied in the scenario of building
Sybil defenses and anonymous communication systems, with
typical examples including SybilLimit [10], SybilGuard [11],
SybilInfer [12] and Whanau [22]. All these schemes are based
on the assumption that social networks are fast mixing, which
has a strong influence on both the performance and security of
the systems [13]. Recently, it was reported that for some real-
world social networks the mixing time is much higher than
anticipated [23]. Thus far, the properties of the mixing time
for other real-world networks are still unknown. Particularly,
accurate analytical studies on the mixing time of model
networks with scale-free [24] small-world [25] properties as
observed in realistic networks are still lacking, although it is
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important for understanding the behavior of mixing time in
actual systems.

In this paper, we study the lower bound of mixing time for
various types of real-world networks with different vertex num-
ber N, including social networks, metabolic networks, citation
networks and so on. By using the link between the mixing time
and the eigenvalues of transition matrix, we show that the lower
bound for the mixing time of the examined realistic networks
is much higher than O(log N). We then study analytically the
mixing time of the Apollonian network with the prominent
scale-free small-world properties [26, 27]. For this purpose,
we derive the recursion expressions for all the eigenvalues of
the transition matrix of the Apollonian network and obtain the
second largest eigenvalue modulus characterizing the mixing
time. Based on this result, we further evaluate the mixing
time of the Apollonian network, which approximately grows
as a sublinear function of the number of vertices. Our work
implies that fast mixing is not a universal property for real-
world networks, especially those with the scale-free and small-
world topologies.

2. PRELIMINARIES

In this section, we recall some basic concepts used in this paper,
including graph and related matrices, mixing time for random
walks on a graph and some related notions and properties about
mixing time.

2.1. Graph and Related Matrices

Consider a simple connected undirected unweighted graph
(network) G = (V , E), where V = V(G) is the set of vertices
and E = E(G) is the set of edges. Let N = |V| denote the
order (the number of vertices) and M = |E| denote the size
(the number of edges) of graph G = (V , E).

For a graph G, there are several matrices associated with it.
The adjacency matrix A = (Aij)N×N describes the adjacency
relation between the N vertices in G, where the entry Aij is
defined as follows: Aij = Aji = 1, if vertices i and j are
connected directly by an edge, Aij = Aji = 0 otherwise. Then,
the degree of vertex i in G is di = ∑N

j=1 Aij. And the diagonal
degree matrix of G is defined as D = diag{d1, d2, . . . , dn}.

From A and D, we can define the transition matrix T of
G given by T = D−1A. Thus, the (i, j)th element of T is
T(i, j) = A(i, j)/di, which describes the transition probability
from vertex i to vertex j in the unbiased random walk taking
place on G. In general, the transition matrix T is asymmetric,
with the exception of regular graphs. The normalized adjacency

matrix of G is P = D− 1
2 AD− 1

2 , which is similar to T due to the
relation P = D

1
2 TD− 1

2 . Thus, T and P have the same set of
eigenvalues. The normalized Laplacian matrix of G is defined

by L = I − D− 1
2 AD− 1

2 , where I is the N × N identity matrix.

2.2. Mixing Time for Random Walks

For a connected undirected graph G = (V , E) with N vertices
and M edges, we can define a discrete-time random walk on it.
A simple unbiased random walk μ = (μ1, μ2, · · · ) on graph
G starting at vertex u is a sequence of stochastic variables μk

whose domain is the vertex set V such that μ1 = u and the
probability for μk+1 = j provided that μk = i is 1/di for
k = 1, 2, · · · , N, where j is a neighbor of vertex i. The random
walk μ on a graph G is actually a Markov chain [28], which
is characterized by the transition matrix T of G. Moreover, if
graph G is non-bipartite, the random walk μ on G is ergodic,
which means that the distribution of μt converges to a unique
stationary distribution π = (π1, π2, · · · , πN) as t → ∞. It
is easy to verify that πi = di

2M , satisfying
∑N

i=1 πi = 1 and
π�T = π�.

For different networks, the asymptotic convergence rate
is often quite different. In order to measure how quickly a
random walk approaches to its limiting distribution, a lot of
metrics were proposed [14], among which mixing time is a
frequently used one. To quantify the meaning of approaching
to the equilibrium distribution, we first introduce a distance
measure as follows.

Definition 2.1. Given two probability distributions D1 and
D2 on a countable state space S, the variation distance is

||D1 − D2|| = 1

2

∑
x∈S

|D1(x) − D2(x)|. (1)

Let ex be the xth canonical basis of vector space R
N , with

position x being 1 and all other positions being 0. Then, for a
random walk starting at vertex x, the probability distribution
of the state at different vertices after t steps is (pt

x)
� = e�

x Tt.
And the variation distance �x(t) between pt

x and the stationary
distribution π is

�x(t) = ||pt
x − π ||. (2)

Using the notion of variation distance, we can define the
mixing time characterized by a parameter ε.

Definition 2.2. Given a threshold 0 < ε < 1, the mixing
time of a vertex x is

Tx(ε) = min{t : �x(t) ≤ ε}. (3)

And the mixing time of the whole network G = (V , E) with
respect to the parameter ε is defined as

T(ε) = max
x∈V

Tx(ε). (4)

A network with N vertices is called fast mixing if its mixing
time is O(poly log N) and O(poly log 1

ε
) [29]. In this paper,

following many previous work [10–12, 23], we strengthen the
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definition of mixing time by considering the particular case
ε = �( 1

n ), and say a network is fast mixing if its mixing time
is not larger than O(log N).

It is very difficult to compute the mixing time by directly
using definition, especially for small ε. However, one can
bound the mixing time in terms of ε and the eigenvalues of
transition matrix. Let λ1, λ2, λ3, · · · , λN be the N eigenvalues
associated with matrix T of a non-bipartite graph G = (V , E)

arranged in a decreasing order, i.e. 1 = λ1 > λ2 ≥ · · · ≥ λN >

−1. Let λ2nd be the second largest eigenvalue modulus (SLEM)
of T defined by λ2nd = max{λ2, |λN |}. The quantity 1 − λ2nd,
often called spectral gap, is closely related to the mixing time
T(ε) of graph G, as shown in the following theorem [29].

Theorem 2.1. For a non-bipartite graph G = (V , E) with N
vertices, the mixing time T(ε) is bounded by

λ2nd

2(1 − λ2nd)
log

(
1

2ε

)
≤ T(ε) ≤ log N + log(1/ε)

1 − λ2nd
. (5)

Theorem 2.1 shows that the SLEM λ2nd determines the mix-
ing time of a graph: the smaller λ2nd is, the faster the Markov
chain converges.

3. MIXING TIME OF REAL-WORLD NETWORKS

It is a cumbersome task to evaluate accurately the mixing time
of random walks in a large network, even if the network struc-
ture is known as prior knowledge. In this section, in order to
understand the behavior of mixing time in real-world networks,
we study the lower bound for the mixing time of various real-
life networks, instead of determining the exact values of mixing
time. For this purpose, we apply Theorem 2.1 to provide lower
bounds of the mixing time for different variation distances.

3.1. Data Sets of Real-World Networks

The datasets we use in our experiment are selected from the
Koblenz Network Collection, which are publicly available at
the website http://konect.uni-koblenz.de/networks/. The exam-
ined datasets include social networks, metabolic networks, cita-
tion networks, hyperlink networks and so on. All the networks
are both scale free and smallworld. Since we are only concerned
with undirected and unweighted networks without multiple
edges or self-loops, for each network that is disconnected, we
only study the mixing time of its largest connected component.
Table 1 summarizes the basic statistics of these real-world net-
works, including dataset name, vertex number N, edge number
M and SLEM λ2nd.

3.2. Experiment Results

In order to be able to apply Theorem 2.1, we perform the
following preprocessing for each network. First, we eliminate

FIGURE 1. Lower bound of the mixing times for various
real-world networks corresponding to the variation distance
ε = 1

N . Each symbol corresponds to a network in Table 1:
1.�; 2.�; 3.�; 4.�; 5.�; 6.�; 7.�; 8.�; 9. ©; 10. �; 11. �; 12. �;
13. �; 14.�; 15. �; 16. �; 17.�; 18. �; 19.♦; 20, �; 21. �; 22. �;
23. 
; 24.�; 25. �; 26. 	.

self-loops and isolated vertices. Second, we convert directed
or weighted graphs to undirected and unweighted. Last, we
extract the largest connected component. After preprocessing,
we compute the SLEM of the transition matrix corresponding
to the largest connected component of each network, which
is shown in the last column of Table 1. We then calculate the
lower bound of the mixing time for each network by applying
Theorem 2.1. Note that we do not consider the upper bound
since it is not relevant to the goal of this paper.

Figure 1 reports the lower bound of the mixing time
corresponding to different variation distance ε for different
real-world networks. For small-scale networks with the order
ranging from 103 to 105, to achieve a variation distance
ε = 10−3, the lower bound of the mixing time is larger than
170 for each social network and is in the range between 60 and
400 for metabolic networks. For medium-scale networks with
vertex number changing from 105 to 106, to achieve ε = 10−5

the lower bound of the mixing time ranges from 104 to 2 × 106

for hyperlink networks. While for large-scale networks with
more than 107 vertices, the lower bound of the mixing time
to achieve ε = 10−7 is varying and dependent on network
structure. For example, it is about 3796, 8051, 102395 and
19852 for Youtube friendship, Flickr links, LiveJournal links
and Skitter, respectively.

As can be seen from Fig. 1, for most of studied real-world
networks, they have a larger lower bound for the mixing time
than anticipated. In particular, when the variation distance is
ε = �( 1

N ), the lower bound of the mixing time is much larger
than O(log N). Since for each network, its actual mixing time
is not less than the lower bound obtained by Theorem 2.1, the
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TABLE 1. Datasets and related information.

No. Dataset N M λ2nd 1/(1 − λ2nd)

Social networks
1 Hamsterster friendships 1788 12476 0.98241332 56.86
2 Hamsterster full 2000 16098 0.98401448 62.56
3 Brightkite 56739 212945 0.99616094 260.48
4 Gowalla 196591 950327 0.99379117 161.06
5 Catster 601213 15661775 0.99998656 74404.76
6 Youtube friendship 1134890 2987624 0.99797217 493.14
7 Flickr links 1624991 15473043 0.99904303 1044.96
8 LiveJournal links 5189808 48687945 0.99992469 13278.45

Metabolic networks
9 Caenorhabditis elegans 453 2, 025 0.95531072 22.38
10 Protein 1458 1948 0.99166729 120.01
11 Human protein (Stelzl) 1615 3106 0.98718391 78.03
12 Human protein (Vidal) 2783 6007 0.96613589 29.53

Citation networks
13 Cora citation 23166 89157 0.99126276 114.45
14 arXiv hep-th 34401 420784 0.98428427 63.63
15 CiteSeer 365154 1721981 0.99828318 582.47
16 US patents 3764117 16511740 0.99690769 323.38

Hyperlink networks
17 Stanford 255265 1941926 0.99998576 70224.72
18 Notre Dame 325729 1497134 0.99998858 87565.67
19 Berkeley/Stanford 654782 6581871 0.99999744 390625.00
20 Google 855802 4291352 0.99970457 3384.90
21 Hudong internal links 1962418 14419760 0.99952804 2118.82

Other networks
22 WordNet 145145 656230 0.99555639 225.04
23 EU institution 224832 339925 0.99990182 10185.37
24 DBLP Coauthorship 317080 1049866 0.99732109 373.29
25 Amazon (MDS) 334863 925872 0.99990726 10782.83
26 Skitter 1694616 11094209 0.99961165 2575.00

real-world networks used in our experiment do not possess the
property of fast mixing.

The above-considered real-world networks are all scale-free
and small-world, which are now recognized as two common
properties of most real networks [30]. In order to deepen
our understanding of the behavior for mixing time of real-
life networks, in what follows, we will derive analytically the
lower bound of mixing time for the Apollonian network with
the striking scale-free small-world features [27]. We will show
that the Apollonian network is also not fast mixing, since the
lower bound of its mixing time scales sublinearly with the
vertex number.

4. MIXING TIME OF THE APOLLONIAN NETWORK

In the section, we study analytically the mixing time for random
walks on the Apollonian network with the remarkable scale-
free and small-world characteristics.

4.1. Network Construction and Properties

The Apollonian network is generated by an iterative manner
[27]. Let A(n), n ≥ 1, denote the Apollonian network after n
iterations. For n = 1,A(1) is a tetrahedron consisting of four
faces or triangles. For n ≥ 2,A(n) is obtained from A(n − 1)

by executing the following operation: for each existing triangle
in A(n − 1) that was created at iteration n − 1, a new vertex is
generated and connected to all the three vertices of this triangle.
Let Nn and En denote the order and the size of the Apollonian
network A(n), respectively. Then, for all n≥1, Nn =2 ·3n−1+2
and En = 2·3n. Figure 2 shows the initial structure of A(1) and
an illustration construction of the Apollonian network.

The Apollonian network exhibits the representative charac-
teristics of real-life networks in nature and society. First, it is
scale-free with its vertex degree obeying a power-law distri-

bution P(k) ∼ k−(1+ ln 3
ln 2 ) [27]. Second, it is small-world with

its diameter Dn growing logarithmically with Nn [31]. Finally,
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240 Y. Qi et al.

FIGURE 2. (a) The initial construction of Apollonian network A(1).
(b) Iterative construction way of the Apollonian network.

it is highly clustered with its average clustering coefficient
approaching to a large constant 0.8284. Thus, the Apollonian
network is a good model for real-world networks, the properties
of which are much studied [32–36].

4.2. All Eigenvalues of Related Matrices

According to Theorem 2.1, it is an easy task to bound the
mixing time of a graph if we know the full eigenvalues of its
transition matrix. However, for a general huge graph, it is a
challenge to determine the eigenvalues of its transition matrix,
due to the limit of time and memory. For the particular case
of the Apollonian network, we can find all the eigenvalues of
related matrix by using the decimation technique [37] and its
particular structure. In what follows, we will derive analytically
all the eigenvalues and their corresponding multiplicities of the
Apollonian network, based on which we will further evaluate
the mixing time of the network.

Let Tn and Pn denote the transition matrix and normalized
adjacency matrix of the Apollonian networkA(n), respectively.
Let �n be the set of eigenvalues of Tn or Pn:

�n =
{
λ

(n)
1 , λ(n)

2 , · · · , λ(n)
Nn

}
, (6)

with the elements obeying relation 1 = λ
(n)
1 > λ

(n)
2 ≥ · · · ≥

λ
(n)
Nn

> −1. Note that �n is a multiset, in which the distinctness
of the elements is neglected.

Lemma 4.1. Let λ be a nonzero eigenvalue of Pn. Define the

function R(x) of a real variable x as R(x) = 6x2−1
3x+2 . Then, R(λ)

is an eigenvalue of Pn−1 with the same multiplicity as λ.

Proof. Let Vn be set of vertices in A(n). Then, Vn can be
divided into two disjoint sets: Vn−1 and V ′

n, where Vn−1 con-
tains all the vertices inherited from A(n−1) and V ′

n includes all
the newly vertices generated at iteration n, i.e. V ′

n = Vn \ Vn−1.
For a vertex i ∈ Vn, let Nn(i) = {j|An(i, j) = 1} denote the set of
its neighbors. Then, Nn(i) is the union of two disjoint sets N1

n(i)
and N2

n(i), where N1
n(i) = Nn(i)∩Vn−1 and N2

n(i) = Nn(i)∩V ′
n.

Let x = (x1, x2, · · · , xNn)
� be an eigenvector corresponding

to the eigenvalue λ of Pn. Then,

Pnx = λx, (7)

where the row corresponding to vertex i can be written as

∑
j∈Nn(i)

Pn(i, j)xj = λxi. (8)

If i ∈ Vn−1, let B(n, i) denote the sum on the left hand side of
(8). Then, B(n, i) can be expressed as

B(n, i) = B1(n, i) + B2(n, i), (9)

where B1(n, i) = ∑
j∈N1

n (i) Pn(i, j)xj and B2(n, i) = ∑
j∈N2

n (i) Pn

(i, j)xj.
By construction, B2(n, i) can be evaluated as

B2(n, i) =
∑

j∈N2
n (i)

xj√
ki(n)

√
kj(n)

=
∑

j∈N2
n (i)

xj√
ki(n)

√
3

. (10)

For any vertex j ∈ N2
n(i), we have

xj = 1

λ

∑
k∈Nn(j)

Pn(j, k)xk = 1

λ

∑
k∈Nn(j)

xk√
kk(n)

√
3

. (11)

Inserting (11) into (10) yields

B2(n, i) = 1

3λ

∑
j∈N2

n (i),k∈Nn(j)

xk√
ki(n)

√
kk(n)

= 1

3λ

⎛
⎝ ∑

j∈N2
n (i),k∈Nn(j),k �=i

xk√
ki(n)

√
kk(n)

+ |N2
n(i)|xi

ki(n)

⎞
⎠

= 1

3λ

(
2B1(n, i) + xi

2

)
. (12)

Combining (12) and (9), we obtain the following relation:

B(n, i) = 3λ + 2

3λ
B1(n, i) + xi

6λ
= λxi, (13)

which can be recast as

2B1(n, i) = 6λ2 − 1

3λ + 2
xi. (14)

On the other hand, by construction of A(n), we have

2B1(n, i) = B(n − 1, i), (15)

which, together with (14), shows that R(λ) = 6λ2−1
3λ+2 is an

eigenvalue of Pn−1, with x′ = (xi)
�
i∈Vn−1

being one of its
corresponding eigenvectors.
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For any vertex j ∈ V ′
n, according to (7), its entry xj of vector

x satisfies

xj = 1

λ

∑
k∈Nn(j)

Pn(j, k)xk. (16)

Note that for any vertex j ∈ V ′
n and any element k ∈

Nn(j), we have k ∈ Vn−1. Thus, x is totally determined
by x′ as given in (16). Let mn(λ) be the multiplicity of an
eigenvalue λ for matrix Pn. Then, mn−1(R(λ)) ≥ mn(λ).
We now prove that only the equality holds. Suppose that
mn−1(R(λ)) > mn(λ). This indicates that there should exist an
extra eigenvector x′ associated to R(λ) without a corresponding
eigenvector x in Pn. But (16) provides x with an associ-
ated eigenvector of Pn, which contradicts our assumption.
Therefore, mn−1(R(λ)) = mn(λ). �

We define two functions h1(x) and h2(x) for real variable x:

h1(x) = 1

12

(
3x −

√
9x2 + 48x + 24

)
(17)

and

h2(x) = 1

12

(
3x +

√
9x2 + 48x + 24

)
. (18)

Then, we have the following lemma.

Lemma 4.2. Let λ be any eigenvalue of Pn−1 such that λ �=
− 1

2 , then h1(λ) and h2(λ) are eigenvalues of Pn, besides
mn(h1(λ)) = mn(h2(λ)) = mn−1(λ).

Proof. This lemma is a direct consequence of Lemma 4.1. �

Lemmas 4.1 and 4.2 show that any non-zero eigenvalue of
Pn can be obtained from that of Pn−1. Moreover, each eigen-
value λ �= − 1

2 of Pn−1 gives rise two eigenvalues of Pn given
by h1(λ) and h2(λ). Thus, what is left is to determine the
multiplicity of the zero eigenvalue of Pn.

Lemma 4.3. For n > 2, the multiplicity of eigenvalue 0 of Pn

is mn(0) = 2 · 3n−2 − 1.

Proof. Note that for any n ≥ 1, the multiplicity of eigenvalue 1
of Pn is 1, i.e. mn(1)=1. Because h1(1)=− 1

2 and h2(− 1
2 )=0,

we have mn(− 1
2 ) = 1 for any n ≥ 2. Then, among the 2Nn−1

eigenvalues of Pn (n > 2), which are generated from those
of Pn−1 by functions h1(x) and h2(x), only one is 0. Thus, for
n > 2, the multiplicity of eigenvalue 0 for Pn is mn(0) = 1 +
Nn − 2Nn−1=2 · 3n−2 − 1. �

Definition 4.4. Let U = {u1, u2, · · · , uk} denote a finite
multiset of real number. Define the multiset R−1(U) to be

R−1(U) ={h1(u1), h1(u2), · · · , h1(uk), h2(u1),

h2(u2), · · · , h2(uk)}. (19)

By using Lemmas 4.1, 4.2, and 4.3, the spectrum of Pn can
be fully determined.

Theorem 4.1. For n ≥ 2, the eigenvalue set �n of matrix
Pn can be classified into two subsets �1

n and �2
n , satisfying

�n = �1
n ∪�2

n , where �1
n = R−1(�n−1) and �2

n contains only
eigenvalue 0 with multiplicity Nn − 2Nn−1 = 2 · 3n−2 − 2.

For the initial network A(1), the set of eigenvalues for
matrix P1 is �1 = {− 1

3 , − 1
3 , − 1

3 , 1}. By iteratively applying
Theorem 4.1, we obtain all the eigenvalues of matrix Pn for
n ≥ 2.

Let Ln denote the normalized Laplacian matrix of the Apol-
lonian network A(n). Since there is a one-to-one correspon-
dence relation for the eigenvalues between the transition matrix
Pn and the normalized Laplacian matrix Ln, we can easily
obtain the eigenvalues for Ln. Let the multiset �n represent the
set of eigenvalues of Ln defined as

�n =
{
η

(n)
1 , η(n)

2 , · · · , η(n)
Nn

}
, (20)

with the eigenvalues obeying 0 = η
(n)
1 < η

(n)
2 ≤ · · · ≤

η
(n)
Nn

< 2. In order to conveniently express the eigenvalues of
Ln, we define two functions r1(x) and r2(x) for real variable x
as follows:

r1(x) = 1

12

(
3x + 9 −

√
9x2 − 66x + 81

)
(21)

and

r2(x) = 1

12

(
3x + 9 +

√
9x2 − 66x + 81

)
. (22)

Based on the relation governing eigenvalues for matrices Ln
and Pn, we can find all the eigenvalues for Ln.

Corollary 4.1. For n ≥ 2, the eigenvalue set �n of matrix
Ln can be classified into two subsets �1

n and �2
n, satisfying

�n = �1
n ∪ �2

n, where �1
n can be expressed in the following

form

�1
n =

{
r1(η

(n−1)
1 ), r1(η

(n−1)
2 ), · · · , r1(η

(n−1)
Nn−1

), (23)

r2(η
(n−1)
1 ), r2(η

(n−1)
2 ), · · · , r2(η

(n−1)
Nn−1

)
}

,

and �2
n contains only eigenvalue 1 with multiplicity Nn −

2Nn−1 = 2 · 3n−2 − 2.
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4.3. Second Smallest Eigenvalue for Normalized
Laplacian Matrix

For a connected graph, its second smallest eigenvalue of the
normalized Laplacian matrix is relevant to diverse dynamical
processes in the graph, for example, the mixing time of random
walks. Next we evaluate the second smallest eigenvalue of the
normalized Laplacian matrix Ln for the Apollonian network.

Theorem 4.2. For the Apollonian network A(n), the second
smallest eigenvalue η

(n)
2 of matrix Ln can be bounded by

η
(n)
2 = �

(
(5/9)n) , (24)

when n → ∞.

Proof. It is obvious that for x ∈ [0, 2], function r1(x) (or
r2(x)) is a monotonically decreasing (or increasing) function.
Moreover, for a given x, r1(x) ≥ r2(x). According to the
Corollary 4.1, for any n > 1, the second smallest eigenvalue
η

(n)
2 satisfies the following recursion relation:

η
(n)
2 = r1(η

(n−1)
2 ). (25)

Thus, we have

η
(n)
2 − η

(n−1)
2

= 2η
(n−1)
2 (3η

(n−1)
2 − 4)

9 − 9η
(n−1)
2 +

√
9

(
η

(n−1)
2

)2 − 66η
(n−1)
2 + 81

. (26)

Note that η
(n−1)
2 < 1 for any n > 2. On the other

hand, from (26) we have η
(n)
2 < η

(n−1)
2 , indicating that the

sequence {η(n)
2 }∞n=1 is decreasing and bounded. Thus, the limit

limn→∞ η
(n)
2 exists. Let limn→∞ η

(n)
2 = η and substitute it into

(25) yields

lim
n→∞ η

(n)
2 = η = 0. (27)

According to (25), we have

η
(n)
2 = 5η

(n−1)
2

9 + o(1)
, (28)

which indicates that the sequence {η(n)
2 }∞n=1 tends to decay

exponentially as η
(n)
2 = u

(
5
9

)n
for n → ∞. In fact,

lim
n→∞

u
(

5
9

)n

1
12

(
3u( 5

9 )n−1 + 9 −
√

9u2( 5
9 )2n−2 − 66u( 5

9 )n−1 + 81

)

= 1. (29)

FIGURE 3. The second smallest eigenvalue η
(n)
2 of Ln for various n.

Thus, for sufficiently large n, the second smallest eigenvalue
η

(n)
2 of Ln can be bounded by η

(n)
2 = �((5/9)n). �

Ignoring the higher order infinitesimal in (28), we obtain a
recursion relation of η

(n)
2 as η

(n)
2 ≈ 5

9η
(n−1)
2 . Considering the

fact that η
(2)
2 = 5

6 , we obtain an approximation value η
(n)
2 as

n → ∞:

η
(n)
2 = 5

6

(
5

9

)n−2

. (30)

In Fig. 3, we shows the accurate and approximative results for
the second smallest eigenvalues η

(2)
2 , which are generated by

(25) and (30), respectively. It is clear that the results yielded by
(25) and (30) agree with each other, with their difference being
intangible.

4.4. Mixing Time

We are now in position to apply the obtained eigenvalues to
determine the mixing time for the Apollonian network A(n),
denoted by Tn(ε).

Theorem 4.3. For large n, the mixing time Tn(ε) of the
Apollonian network A(n) can be bounded by

Tn(ε) = 

(
(Nn)

2−log3 5
)

. (31)

For ε = �(1/Nn), the bound of the mixing time is

Tn(ε) = �
(
(Nn)

2−log3 5 log Nn

)
. (32)

Proof. Functions h1(x) and h2(x) are monotonically decreas-
ing and increasing functions on the domain x ∈ (−1, 1),
respectively. Thus, for the smallest eigenvalue in set �n, we
have λ

(n)
Nn

= min
{
h1(λ

(n−1)
N1

), h2(λ
(n−1)
Nn−1

)
} ≥ − 1

2 , implying
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that |λ(n)
Nn

| ≤ 1
2 . While for λ

(n)
2 , we have limn→∞ λ

(n)
2 =

1 − limn→∞ η
(n)
2 = 1. Thus, the SLEM λ

(n)
2nd of A(n) obeys

λ
(n)
2nd = max{λ(n)

2 , |λ(n)
Nn

|} = λ
(n)
2 . For large n, the SLEM λ

(n)
2nd

can be expressed as

λ
(n)
2nd = 1 − η

(n)
2 = 1 − �

(
(5/9)n) . (33)

Considering Nn = 2 · 3n−1 + 2, one obtains

n = log3(Nn − 2) + 1 − log3 2. (34)

Plugging (34) into (33) leads to

λ
(n)
2nd = 1 − �

(
(Nn)

2−log3 5
)

. (35)

By Theorem 2.1, the mixing time of A(n) is bounded by

Tn(ε) = 

(
(Nn)

2−log3 5
)

. (36)

For ε = �(1/Nn), we have

Tn(ε) = �
(
(Nn)

2−log3 5 log Nn

)
. (37)

This completes the proof. �

Theorem 4.3 provides a lower bound 

(
(Nn)

2−log3 5
)

of the
mixing time for the Apollonian network A(n), which increases
sublinearly with the network order Nn. This is much less than
the bound of mixing time for regular rings that grows as
the square of their order [38]. Thus, although the Apollonian
network has a smaller mixing time than that of regular rings, it
does not possess the fast mixing property.

In Fig. 4, we display the lower bound for the mixing time
Tn(ε) of the Apollonian network A(n) given by (5) and (33) for
different n and ε. From Fig. 4, we can observe that each curve
in double-logarithmic scale is nearly a straight line, especially
in the region of large Nn, which means that the lower bound
of mixing time Tn(ε) in the Apollonian network A(n) exhibits
approximately a power-law function of the network order Nn.

Note that for most real-world scale-free networks, the degree
distribution P(k) of their vertices takes a power law form
k−γ with the power exponent γ lies between 2 and 3 [30].
Although we only study analytically the mixing time of the
Apollonian network with γ = 1+ ln 2/ ln 3, it is not difficult to
construct other deterministic scale-free networks with varying
γ ∈ [2, 3], for which the lower bound of mixing time also scales
sublinearly with the number of vertices.

5. CONCLUSION

As an important parameter of random walks on a network, the
mixing time has found broad applications, with its application
effects heavily depending on its behavior. It is believed that

FIGURE 4. The lower bound for the mixing time Tn(ε) of the
Apollonian network A(n) for various n and ε.

real-world networks, especially social networks, are fast mix-
ing, with their mixing time scaling at most O(log N). However,
the behavior of mixing time for real-world networks is not well
understood. Furthermore, many real-world networks are scale-
free and small-world, thus far there have been no rigourous
results about mixing time for model networks with these two
common properties of realistic systems. In this paper, we exper-
imentally studied the mixing time of various real-world scale-
free small-world networks, such as social networks, metabolic
networks and citation networks. We evaluated the lower bounds
of mixing time for many real-world networks, by using their
link with SLEM. Our results show that the observed lower
bounds are larger than previous works anticipated, implying
that these examined networks are not fast mixing.

In order to better understand the mixing time in scale-
free small-world networks, we further presented an analytical
research for mixing time of the Apollonian network. By using
the decimation technique, we fully characterized the eigen-
values and their corresponding multiplicities for the transition
matrix of the Apollonian network. We also derived analytically
the SLEM of the transition matrix and obtained the asymp-
totic behavior of the mixing time of the Apollonian network,
which is approximately a power-law function of the number
of vertices, with the power exponent slightly smaller than 1.
Therefore, the Apollonian network is not fast mixing. Our
work deepens the understanding of mixing time in real-world
networks and provides useful insights into future applications
of the mixing time.
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